NCERT Solutions | Class 11 Maths Chapter 4 | Principle of mathematical induction

CBSE Solutions | Maths Class 11
Check the below NCERT Solutions for Class 11 Maths Chapter 4 Principle of mathematical induction Pdf free download. NCERT Solutions Class 11 Maths were prepared based on the latest exam pattern. We have Provided Principle of mathematical induction Class 11 Maths NCERT Solutions to help students understand the concept very well.
NCERT | Class 11 Maths
Book: | National Council of Educational Research and Training (NCERT) |
---|---|
Board: | Central Board of Secondary Education (CBSE) |
Class: | 11th |
Subject: | Maths |
Chapter: | 4 |
Chapters Name: | Principle of mathematical induction |
Medium: | English |
Principle of mathematical induction | Class 11 Maths | NCERT Books Solutions
NCERT Solutions for Class 11 Maths Chapter 4 Principle of Mathematical Induction
NCERT Exercises
Chapter 4 Principle of Mathematical Induction Exercise – 4.1
Prove the following by using the principle of mathematical induction for aline n ∈ N :
Ex 4.1 Class 11 Maths Question 1.
\(1+{ 3 }^{ 2 }+{ 3 }^{ 3 }+\cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot +{ 3 }^{ n }=\frac { \left( { 3 }^{ n }-1 \right) }{ 2 } \)
Solution.
Let the given statement be P(n) i.e.,
P(n) : \(1+{ 3 }^{ 2 }+{ 3 }^{ 3 }+\cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot +{ 3 }^{ n }=\frac { \left( { 3 }^{ n }-1 \right) }{ 2 } \)
Ex 4.1 Class 11 Maths Question 2.
\({ 1 }^{ 3 }+{ 2 }^{ 3 }+{ 3 }^{ 3 }+\cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot +{ n }^{ 3 }={ \left( \frac { n\left( n+1 \right) }{ 2 } \right) }^{ 2 }\)
Solution.
Let the given statement be P(n) i.e.,
P(n) : \({ 1 }^{ 3 }+{ 2 }^{ 3 }+{ 3 }^{ 3 }+\cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot +{ n }^{ 3 }={ \left( \frac { n\left( n+1 \right) }{ 2 } \right) }^{ 2 }\)
Ex 4.1 Class 11 Maths Question 3.
\(1+\frac { 1 }{ \left( 1+2 \right) } +\frac { 1 }{ \left( 1+2+3 \right) } +\cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot +\frac { 1 }{ \left( 1+2+3+\cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot +n \right) } =\frac { 2 }{ \left( n+1 \right) } \)
Solution.
Let the given statement be P(n), i.e.,
P(n) : \(1+\frac { 1 }{ \left( 1+2 \right) } +\frac { 1 }{ \left( 1+2+3 \right) } +\cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot +\frac { 1 }{ \left( 1+2+3+.\cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot +n \right) } =\frac { 2 }{ \left( n+1 \right) } \)
Ex 4.1 Class 11 Maths Question 4.
\(1.2.3+2.3.4+\cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot +n\left( n+1 \right) \left( n+2 \right) =\frac { n\left( n+1 \right) \left( n+2 \right) \left( n+3 \right) }{ 4 } \)
Solution.
Let the given statement be P(n), i.e.,
P(n) : \(1.2.3+2.3.4+\cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot +n\left( n+1 \right) \left( n+2 \right) =\frac { n\left( n+1 \right) \left( n+2 \right) \left( n+3 \right) }{ 4 } \)
Ex 4.1 Class 11 Maths Question 5.
\(1.3+{ 2.3 }^{ 2 }+{ 3.3 }^{ 3 }+\cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot +{ n.3 }^{ n }=\frac { \left( 2n-1 \right) { 3 }^{ n+1 }+3 }{ 4 } \)
Solution.
Let the given statement be P(n), i.e.,
P(n) : \(1.3+{ 2.3 }^{ 2 }+{ 3.3 }^{ 3 }+\cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot +{ n.3 }^{ n }=\frac { \left( 2n-1 \right) { 3 }^{ n+1 }+3 }{ 4 } \)
Ex 4.1 Class 11 Maths Question 6.
\(1.2+2.3+3.4+\cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot +n.\left( n+1 \right) =\left[ \frac { n\left( n+1 \right) \left( n+2 \right) }{ 3 } \right] \)
Solution.
Let the given statement be P(n), i.e.,
P(n) : \(1.2+2.3+3.4+\cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot +n.\left( n+1 \right) =\left[ \frac { n\left( n+1 \right) \left( n+2 \right) }{ 3 } \right] \)
Ex 4.1 Class 11 Maths Question 7.
\(1.3+3.5+5.7+\cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot +\left( 2n-1 \right) \left( 2n+1 \right) =\frac { n\left( { 4n }^{ 2 }+6n-1 \right) }{ 3 } \)
Solution.
Let the given statement be P(n), i.e.,
P(n) : \(1.3+3.5+5.7+\cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot +\left( 2n-1 \right) \left( 2n+1 \right) =\frac { n\left( { 4n }^{ 2 }+6n-1 \right) }{ 3 } \)
Ex 4.1 Class 11 Maths Question 8.
\(1.2+2.{ 2 }^{ 2 }+3.{ 2 }^{ 3 }+\cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot +n.{ 2 }^{ n }=\left( n-1 \right) { 2 }^{ n+1 }+2\)
Solution.
Let the given statement be P(n), i.e.,
P(n) : \(1.2+2.{ 2 }^{ 2 }+3.{ 2 }^{ 3 }+\cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot +n.{ 2 }^{ n }=\left( n-1 \right) { 2 }^{ n+1 }+2\)
Ex 4.1 Class 11 Maths Question 9
\(\frac { 1 }{ 2 } +\frac { 1 }{ 4 } +\frac { 1 }{ 8 } +\cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot +\frac { 1 }{ { 2 }^{ n } } =1-\frac { 1 }{ { 2 }^{ n } } \)
Solution.
Let the given statement be P(n), i.e.,
P(n) : \(\frac { 1 }{ 2 } +\frac { 1 }{ 4 } +\frac { 1 }{ 8 } +\cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot +\frac { 1 }{ { 2 }^{ n } } =1-\frac { 1 }{ { 2 }^{ n } } \)
Ex 4.1 Class 11 Maths Question 10.
\(\frac { 1 }{ 2.5 } +\frac { 1 }{ 5.8 } +\frac { 1 }{ 8.11 } +\cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot +\frac { 1 }{ \left( 3n-1 \right) \left( 3n+2 \right) } =\frac { n }{ \left( 6n+4 \right) } \)
Solution.
Let the given statement be P(n), i.e.,
P(n) : \(\frac { 1 }{ 2.5 } +\frac { 1 }{ 5.8 } +\frac { 1 }{ 8.11 } +\cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot +\frac { 1 }{ \left( 3n-1 \right) \left( 3n+2 \right) } =\frac { n }{ \left( 6n+4 \right) } \)
Ex 4.1 Class 11 Maths Question 11.
\(\frac { 1 }{ 1.2.3 } +\frac { 1 }{ 2.3.4 } +\frac { 1 }{ 3.4.5 } +\cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot +\frac { 1 }{ n\left( n+1 \right) \left( n+2 \right) } =\frac { n\left( n+3 \right) }{ 4\left( n+1 \right) \left( n+2 \right) } \)
Solution.
Let the given statement be P(n), i.e.,
P(n) : \(\frac { 1 }{ 1.2.3 } +\frac { 1 }{ 2.3.4 } +\frac { 1 }{ 3.4.5 } +\cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot +\frac { 1 }{ n\left( n+1 \right) \left( n+2 \right) } =\frac { n\left( n+3 \right) }{ 4\left( n+1 \right) \left( n+2 \right) } \)
Ex 4.1 Class 11 Maths Question 12.
\(a+ar+{ ar }^{ 2 }+\cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot +{ ar }^{ n-1 }=\frac { a\left( { r }^{ n }-1 \right) }{ r-1 } \)
Solution.
Let the given statement be P(n), i.e.,
P(n) : \(a+ar+{ ar }^{ 2 }+\cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot +{ ar }^{ n-1 }=\frac { a\left( { r }^{ n }-1 \right) }{ r-1 } \)
Ex 4.1 Class 11 Maths Question 13.
\(\left( 1+\frac { 3 }{ 1 } \right) \left( 1+\frac { 5 }{ 4 } \right) \left( 1+\frac { 7 }{ 9 } \right) \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \left( 1+\frac { \left( 2n+1 \right) }{ { n }^{ 2 } } \right) ={ \left( n+1 \right) }^{ 2 }\)
Solution.
Let the given statement be P(n), i.e.,
P(n) : \(\left( 1+\frac { 3 }{ 1 } \right) \left( 1+\frac { 5 }{ 4 } \right) \left( 1+\frac { 7 }{ 9 } \right) \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \left( 1+\frac { \left( 2n+1 \right) }{ { n }^{ 2 } } \right) ={ \left( n+1 \right) }^{ 2 }\)
Ex 4.1 Class 11 Maths Question 14.
\(\left( 1+\frac { 1 }{ 1 } \right) \left( 1+\frac { 1 }{ 2 } \right) \left( 1+\frac { 1 }{ 3 } \right) \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \left( 1+\frac { 1 }{ n } \right) =\left( n+1 \right) \)
Solution.
Let the given statement be P(n), i.e.,
P(n) : \(\left( 1+\frac { 1 }{ 1 } \right) \left( 1+\frac { 1 }{ 2 } \right) \left( 1+\frac { 1 }{ 3 } \right) \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \left( 1+\frac { 1 }{ n } \right) =\left( n+1 \right) \)
Ex 4.1 Class 11 Maths Question 15.
\({ 1 }^{ 2 }+{ 3 }^{ 2 }+{ 5 }^{ 2 }+\cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot +{ \left( 2n-1 \right) }^{ 2 }=\frac { n\left( 2n-1 \right) \left( 2n+1 \right) }{ 3 } \)
Solution.
Let the given statement be P(n), i.e.,
P(n) : \({ 1 }^{ 2 }+{ 3 }^{ 2 }+{ 5 }^{ 2 }+\cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot +{ \left( 2n-1 \right) }^{ 2 }=\frac { n\left( 2n-1 \right) \left( 2n+1 \right) }{ 3 } \)
Ex 4.1 Class 11 Maths Question 16.
\(\frac { 1 }{ 1.4 } +\frac { 1 }{ 4.7 } +\frac { 1 }{ 7.10 } +\cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot +\frac { 1 }{ \left( 3n-2 \right) \left( 3n+1 \right) } =\frac { n }{ \left( 3n+1 \right) } \)
Solution.
Let the given statement be P(n), i.e.,
P(n) : \(\frac { 1 }{ 1.4 } +\frac { 1 }{ 4.7 } +\frac { 1 }{ 7.10 } +\cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot +\frac { 1 }{ \left( 3n-2 \right) \left( 3n+1 \right) } =\frac { n }{ \left( 3n+1 \right) } \)
Ex 4.1 Class 11 Maths Question 17.
\(\frac { 1 }{ 3.5 } +\frac { 1 }{ 5.7 } +\frac { 1 }{ 7.9 } +\cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot +\frac { 1 }{ \left( 2n+1 \right) \left( 2n+3 \right) } =\frac { n }{ 3\left( 2n+3 \right) } \)
Solution.
Let the given statement be P(n), i.e.,
P(n) : \(\frac { 1 }{ 3.5 } +\frac { 1 }{ 5.7 } +\frac { 1 }{ 7.9 } +\cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot +\frac { 1 }{ \left( 2n+1 \right) \left( 2n+3 \right) } =\frac { n }{ 3\left( 2n+3 \right) } \)
Ex 4.1 Class 11 Maths Question 18.
\(1+2+3+\cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot +n<\frac { 1 }{ 8 } { \left( 2n+1 \right) }^{ 2 }\)
Solution.
Let the given statement be P(n), i.e.,
P(n) : \(1+2+3+\cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot +n<\frac { 1 }{ 8 } { \left( 2n+1 \right) }^{ 2 }\)
Ex 4.1 Class 11 Maths Question 19.
n(n+1 )(n + 5) is a multiple of 3.
Solution.
Let the given statement be P(n), i.e.,
P(n): n(n + l)(n + 5) is a multiple of 3.
Ex 4.1 Class 11 Maths Question 20.
\({ 10 }^{ 2n-1 }+1\) is divisible by 11.
Solution.
Let the given statement be P(n), i.e.,
P(n): \({ 10 }^{ 2n-1 }+1\) is divisible by 11
Ex 4.1 Class 11 Maths Question 21.
\({ x }^{ 2n }-{ y }^{ 2n }\) is divisible by x + y.
Solution.
Let the given statement be P(n), i.e.,
P(n): \({ x }^{ 2n }-{ y }^{ 2n }\) is divisible by x + y.
Ex 4.1 Class 11 Maths Question 22.
\({ 3 }^{ 2n+2 }-8n-9\) is divisible by 8.
Solution.
Let the given statement be P(n), i.e.,
P(n): \({ 3 }^{ 2n+2 }-8n-9\) is divisible by 8.
Ex 4.1 Class 11 Maths Question 23.
\({ 41 }^{ n }-{ 14 }^{ n }\) is a multiple of 27.
Solution.
Let the given statement be P(n), i.e.,
P(n): \({ 41 }^{ n }-{ 14 }^{ n }\) is a multiple of 27.
Ex 4.1 Class 11 Maths Question 24.
\(\left( 2n+7 \right) <{ \left( n+3 \right) }^{ 2 }\)
Solution.
Let the given statement be P(n), i.e.,
P(n): \(\left( 2n+7 \right) <{ \left( n+3 \right) }^{ 2 }\)
First we prove that the statement is true for n = 1.
NCERT Class 11 Maths
Class 11 Maths Chapters | Maths Class 11 Chapter 4
Chapterwise NCERT Solutions for Class 11 Maths
-
NCERT Solutions For Class 11 Maths Chapter 1 Sets
NCERT Solutions For Class 11 Maths Chapter 2 Functions and relations
NCERT Solutions For Class 11 Maths Chapter 3 Trigonometric functions
NCERT Solutions For Class 11 Maths Chapter 4 Principle of mathematical induction
NCERT Solutions For Class 11 Maths Chapter 5 Quadratic equations and complex numbers
NCERT Solutions For Class 11 Maths Chapter 6 Linear Inequalities
NCERT Solutions For Class 11 Maths Chapter 7 Permutations and combinations
NCERT Solutions For Class 11 Maths Chapter 8 Binomial Theorem
NCERT Solutions For Class 11 Maths Chapter 9 Sequences and series
NCERT Solutions For Class 11 Maths Chapter 10 Straight lines
NCERT Solutions For Class 11 Maths Chapter 11 Conic sections
NCERT Solutions For Class 11 Maths Chapter 12 Introduction to three-dimensional geometry
NCERT Solutions For Class 11 Maths Chapter 13 Limits and derivatives
NCERT Solutions For Class 11 Maths Chapter 14 Mathematical Reasoning
NCERT Solutions For Class 11 Maths Chapter 15 Statistics
NCERT Solutions For Class 11 Maths Chapter 16 Probability
NCERT Solutions for Class 12 All Subjects | NCERT Solutions for Class 10 All Subjects |
NCERT Solutions for Class 11 All Subjects | NCERT Solutions for Class 9 All Subjects |
Post a Comment
इस पेज / वेबसाइट की त्रुटियों / गलतियों को यहाँ दर्ज कीजिये
(Errors/mistakes on this page/website enter here)