NCERT Solutions for Class 10 Maths Chapter 9 Some Applications of Trigonometry (त्रिकोणमिति का अनुप्रयोग)

कक्षा 10 गणित एनसीईआरटी समाधान
NCERT Solutions for Class 10 Maths Chapter 9 Question answer
Class 10 Maths Some Applications of Trigonometry (त्रिकोणमिति का अनुप्रयोग) Chapter 9 Question answer
Class 10 Maths Chapter 9 Some Applications of Trigonometry (त्रिकोणमिति का अनुप्रयोग) Questions and answers
प्रश्नावली 9.1
Ex 9.1 Class 10 गणित Q1. सर्कस का एक कलाकार एक 20 m लंबी डोर पर चढ़ रहा है जो अच्छी तरह से तनी हुई है और भूमि पर सीधे लगे खंभे के शिखर से बंध हुआ है। यदि भूमि स्तर के साथ डोर द्वारा बनाया गया कोण 30° का हो तो खंभे की ऊँचाई ज्ञात कीजिए (देखिए आकृति)|
Solution:
माना खंभे की ऊँचाई = h मीटर
डोरी की लंबाई = 20 मीटर
θ = 30०
समकोण त्रिभुज ABC में;
Ex 9.1 Class 10 गणित Q2. आँधी आने से एक पेड़ टूट जाता है और टूटा हुआ भाग इस तरह मुड़ जाता है कि पेड़ का शिखर जमीन को छूने लगता है और इसके साथ 30० का कोण बनाता है। पेड़ के पाद-बिंदु की दूरी, जहाँ पेड़ का शिखर जमीन को छूता है, 8 m है। पेड़ की ऊँचाई ज्ञात कीजिए।
Solution:
माना पेड़ की ऊँचाई BC’ है और पेड़ बिंदु A से टूटकर
जमीन पर बिंदु C पर झुकी है |
θ = 30°, BC = 8 m
समकोण त्रिभुज ABC में, AB भुजा के लिए,
Ex 9.1 Class 10 गणित Q3. एक ठेकेदार बच्चों को खेलने के लिए एक पार्क में दो फिसलनपट्टी लगाना चाहती है। 5 वर्ष से कम उम्र के बच्चों के लिए वह एक ऐसी फिसलनपट्टी लगाना चाहती है जिसका शिखर 1.5 m की ऊँचाई पर हो और भूमि के साथ 30° के कोण पर झुका हुआ हो, जबकि इससे अधिक उम्र के बच्चों के लिए वह 3 m की ऊँचाई पर एक अधिक ढाल की फिसलनपट्टी लगाना चाहती है, जो भूमि के साथ 60° का कोण बनाती हो। प्रत्येक स्थिति में फिसलनपट्टी की लंबाई क्या होनी चाहिए?
Solution:
Ex 9.1 Class 10 गणित Q4. भूमि के एक बिंदु से, जो मीनार के पाद-बिंदु से 30 m की दूरी पर है, मीनार के शिखर का उन्नयन कोण 30° है। मीनार की ऊँचाई ज्ञात कीजिए।
Solution:
माना मीनार AB की ऊँचाई = h मीटर
बिंदु C से मीनार के पाद बिंदु B की दुरी = 30 m
समकोण ΔABC में,
Ex 9.1 Class 10 गणित Q5. भूमि से 60 m की ऊँचाई पर एक पतंग उड़ रही है। पतंग में लगी डोरी को अस्थायी रूप से भूमि के एक बिंदु से बांध् दिया गया है। भूमि के साथ डोरी का झुकाव 60° है। यह मानकर कि डोरी में कोई ढील नहीं है, डोरी की लंबाई ज्ञात कीजिए।
Solution:
Ex 9.1 Class 10 गणित Q6. 1.5 m लंबा एक लड़का 30 m ऊँचे एक भवन से कुछ दूरी पर खड़ा है। जब वह ऊँचे भवन की ओर जाता है तब उसकी आँख से भवन के शिखर का उन्नयन कोण 30° से 60° हो जाता है। बताइए कि वह भवन की ओर कितनी दूरी तक चलकर गया है।
Solution:
माना कि वह लड़का x m दूर भवन की ओर गया |
लडके ऊंचाई छोड़कर भवन की ऊंचाई (AB) = 30 m – 1.5 m
= 28.5 m
समकोण त्रिभुज ABC में,
Ex 9.1 Class 10 गणित Q7. भूमि के एक बिंदु से एक 20 m ऊँचे भवन के शिखर पर लगी एक संचार मीनार के तल और शिखर के उन्नयन कोण क्रमशः 45° और 60° है। मीनार की ऊँचाई ज्ञात कीजिए।
Solution:
माना संचार मीनार की ऊंचाई (AD) = h m
भवन की ऊंचाई (DC) = 20 m
माना भूमि पर वह बिंदु B है |
भवन सहित मीनार की ऊंचाई (AC) = (20 + h) m
समकोण त्रिभुज BCD में,
Ex 9.1 Class 10 गणित Q8. एक पेडस्टल के शिखर पर एक 1.6 m ऊँची मूर्ति लगी है। भूमि के एक बिंदु से मूर्ति के शिखर का उन्नयन कोण 60° है और उसी ¯बदु से पेडस्टल के शिखर का उन्नयन कोण 45° है। पेडस्टल की ऊँचाई ज्ञात कीजिए।
Solution:
माना पेडस्टल की ऊंचाई h मीटर है |
मूर्ति की ऊंचाई = 1.6 m
समकोण त्रिभुज BCD में,
Ex 9.1 Class 10 गणित Q9. एक मीनार के पाद-बिंदु से एक भवन के शिखर का उन्नयन कोण 30o है और भवन के पाद-बिंदु से मीनार के शिखर का उन्नयन कोण 60° है। यदि मीनार 50m ऊँची हो, तो भवन की ऊँचाई ज्ञात कीजिए।
Solution:
माना भवन की ऊंचाई = h m
समकोण त्रिभुज ABC में,
Ex 9.1 Class 10 गणित Q10. एक 80 m चैड़ी सड़क के दोनों ओर आमने-सामने समान लंबाई वाले दो खंभे लगे हुए हैं। इन दोनों खंभों के बीच सड़क के एक बिंदु से खंभों के शिखर के उन्नयन कोण क्रमशः 60° और 30° है। खंभों की ऊँचाई और खंभों से बिंदु की दूरी ज्ञात कीजिए।
Solution:
माना भूमि पर वह बिंदु B है |
और खंभों की ऊंचाई = h मीo,
B बिंदु से एक खंभे की दुरी = x m
तो दुसरे खंभे की दुरी = (80 – x) m
समकोण त्रिभुज ABC में,
Ex 9.1 Class 10 गणित Q11. एक नहर के एक तट पर एक टीवी टॉवर उर्ध्वार्धर खड़ा है टॉवर के ठीक सामने दूसरे तट के एक अन्य बिंदु से टॉवर के शिखर का उन्नयन कोण 60° है। इसी तट पर इस बिंदु से 20 m दूर और इस बिंदु को मीनार के पाद से मिलाने वाली रेखा पर स्थित एक अन्य बिंदु से टावर के शिखर का उन्नयन कोण 30° है । टॉवर की ऊँचाई और नहर की चैड़ाई ज्ञात कीजिए।
Solution:
माना टॉवर (AB) की ऊंचाई = h मीo
नहर BC की चौड़ाई = x मीo
समकोण त्रिभुज ABC में,
Ex 9.1 Class 10 गणित Q12. 7 m ऊँचे भवन के शिखर से एक केबल टावर के शिखर का उन्नयन कोण 60° है और इसके पाद का अवनमन कोण 45o है। टॉवर की ऊँचाई ज्ञात कीजिए।
Solution:
माना टॉवर की ऊँचाई = h मीटर
भवन DE की ऊंचाई = 7 मीo
DE = BC = 7 मीo
AB की लंबाई = h – 7 मीo
समकोण त्रिभुज EDC में,
Ex 9.1 Class 10 गणित Q13. समुद्र-तल से 75 m ऊँची लाइट हाउस के शिखर से देखने पर दो समुद्री जहाजों के अवनमन कोण 30° और 45° हैं। यदि लाइट हाउस के एक ही ओर एक जहाज दूसरे जहाज के ठीक पीछे हो तो दो जहाजों के बीच की दूरी ज्ञात कीजिए।
Solution:
माना दो जहाजों A तथा B है
जिनका अवनमन कोण क्रमश: 45° और 30° है |
लाइट-हाउस DC की ऊंचाई = 75 m
चूँकि अवनमन कोण उन्नयन कोण के बराबर होता है |
∴ ∠DAC = 45o और ∠DBC = 30o
Ex 9.1 Class 10 गणित Q14. 1.2 m लंबी एक लड़की भूमि से 88.2 m की ऊँचाई पर एक क्षैतिज रेखा में हवा में उड़ रहे गुब्बारे को देखती है। किसी भी क्षण लड़की की आँख से गुब्बारे का उन्नयन कोण 60° है। कुछ समय बाद उन्नयन कोण घटकर 30° हो जाता है | इस अन्तराल के दौरान गुब्बारे द्वारा तय की गयी दुरी ज्ञात कीजिए |
Solution:
लड़की की ऊंचाई = 1.2 m
भूमि से गुब्बारे की ऊंचाई = 88.2 m
लड़की को छोड़कर गुब्बारे की ऊंचाई = 88.2 – 1.2
AB = DE = 87.0 m
तय दुरी = BE
समकोण DABC में,
अर्थात इस अन्तराल के दौरान गुब्बारे द्वारा तय की गयी दुरी 87√3 m है |
Ex 9.1 Class 10 गणित Q15. एक सीध राजमार्ग एक मीनार के पाद तक जाता है। मीनार के शिखर पर खड़ा एक आदमी एक कार को 30° के अवनमन कोण पर देखता है जो कि मीनार के पाद की ओर एक समान चाल से जाता है। छः सेकंड बाद कार का अवनमन कोण 60° हो गया। इस बिंदु से मीनार के पाद तक पहुँचने में कार द्वारा लिया गया समय ज्ञात कीजिए।
Solution:
माना कार को बिंदु C से मीनार के पाद B तक पहुँचने में x सेके ण्ड लगता है |
Ex 9.1 Class 10 गणित Q16. मीनार के आधर से और एक सरल रेखा में 4 m और 9 m की दूरी पर स्थित दो ¯बदुओं से मीनार के शिखर के उन्नयन कोण पूरक कोण हैं। सिद्ध कीजिए कि मीनार की ऊँचाई 6 m है।
Solution:
माना मीनार की ऊँचाई = h मीटर है |
समकोण त्रिभुज ABC में,
NCERT Solutions for Class 10 Maths in Hindi
NCERT Solutions for Class 10 Maths Chapter 2 Polynomials (बहुपद)
NCERT Solutions for Class 10 Maths Chapter 3 Pairs of Linear Equations in Two Variables (दो चरों वाले रखिक समीकरणों का युग्म)
NCERT Solutions for Class 10 Maths Chapter 4 Quadratic Equations (द्विघात समीकरण)
NCERT Solutions for Class 10 Maths Chapter 5 Arithmetic Progressions (समान्तर श्रेढ़ी)
NCERT Solutions for Class 10 Maths Chapter 6 Triangles (त्रिभुज)
NCERT Solutions for Class 10 Maths Chapter 7 Coordinate Geometry (निर्देशांक ज्यामिति)
NCERT Solutions for Class 10 Maths Chapter 8 Introduction to Trigonometry (त्रिकोणमिति का परिचय)
NCERT Solutions for Class 10 Maths Chapter 9 Some Applications of Trigonometry (त्रिकोणमिति का अनुप्रयोग)
NCERT Solutions for Class 10 Maths Chapter 10 Circles (वृत्त)
NCERT Solutions for Class 10 Maths Chapter 11 Constructions (रचनाएँ)
NCERT Solutions for Class 10 Maths Chapter 12 Areas Related to Circles (वृतों से सम्बंधित क्षेत्रफल)
NCERT Solutions for Class 10 Maths Chapter 13 Surface Areas and Volumes (पृष्ठीय क्षेत्रफल एवं आयतन)
NCERT Solutions for Class 10 Maths Chapter 14 Statistics (सांख्यिकी)
NCERT Solutions for Class 10 Maths Chapter 15 Probability (प्रायिकता)
Post a Comment
इस पेज / वेबसाइट की त्रुटियों / गलतियों को यहाँ दर्ज कीजिये
(Errors/mistakes on this page/website enter here)