MCQ Questions for Class 11 Maths Chapter 13 Limits and Derivatives with Answers

Limits and Derivatives Class 11 Maths MCQs Questions with Answers
Check the below NCERT MCQ Questions for Class 11 Maths Chapter 13 Limits and Derivatives with Answers Pdf free download. MCQ Questions for Class 11 Maths with Answers were prepared based on the latest exam pattern. We have Provided Limits and Derivatives Class 11 Maths MCQs Questions with Answers to help students understand the concept very well.
Class 11 Maths Chapter 13 Quiz
Class 11 Maths Chapter 13 MCQ Online Test
You can refer to NCERT Solutions for Class 11 Maths Chapter 13 Limits and Derivatives to revise the concepts in the syllabus effectively and improve your chances of securing high marks in your board exams.
Limits and Derivatives Class 11 Maths MCQ online test
Q1. | The expansion of log(1 – x) is |
A.x – x² /2 + x³ /3 – …….. |
|
B.x + x² /2 + x³ /3 + …….. |
|
C.-x + x² /2 – x³ /3 + …….. |
|
D.-x – x² /2 – x³ /3 – …….. |
Ans: -x – x² /2 – x³ /3 – ……..
log(1 – x) = -x – x² /2 – x³ /3 – ……..
log(1 – x) = -x – x² /2 – x³ /3 – ……..
Q2. | The value of Limx→a (a × sin x – x × sin a)/(ax² – xa²) is |
A.= (a × cos a + sin a)/a² |
|
B.= (a × cos a – sin a)/a² |
|
C.= (a × cos a + sin a)/a |
|
D.= (a × cos a – sin a)/a |
Ans: = (a × cos a – sin a)/a²
Given,
Limx→a (a × sin x – x × sin a)/(ax² – xa²)
When we put x = a in the expression, we get 0/0 form.
Now apply L. Hospital rule, we get
Limx→a (a × cos x – sin a)/(2ax – a²)
= (a × cos a – sin a)/(2a × a – a²)
= (a × cos a – sin a)/(2a² – a²)
= (a × cos a – sin a)/a²
So, Limx→a (a × sin x – x × sin a)/(ax² – xa²) = (a × cos a – sin a)/a²
Given,
Limx→a (a × sin x – x × sin a)/(ax² – xa²)
When we put x = a in the expression, we get 0/0 form.
Now apply L. Hospital rule, we get
Limx→a (a × cos x – sin a)/(2ax – a²)
= (a × cos a – sin a)/(2a × a – a²)
= (a × cos a – sin a)/(2a² – a²)
= (a × cos a – sin a)/a²
So, Limx→a (a × sin x – x × sin a)/(ax² – xa²) = (a × cos a – sin a)/a²
Q3. | Limx→-1 [1 + x + x² + ……….+ x10] is |
A.0 |
|
B.1 |
|
C.-1 |
|
D.2 |
Ans: 1
Given, Limx→-1 [1 + x + x² + ……….+ x10]
= 1 + (-1) + (-1)² + ……….+ (-1)10
= 1 – 1 + 1 – ……. + 1
= 1
Given, Limx→-1 [1 + x + x² + ……….+ x10]
= 1 + (-1) + (-1)² + ……….+ (-1)10
= 1 – 1 + 1 – ……. + 1
= 1
Q4. | The value of the limit Limx→0 {log(1 + ax)}/x is |
A.0 |
|
B.1 |
|
C.a |
|
D.1/a |
Ans: a
Given, Limx→0 {log(1 + ax)}/x
= Limx→0 {ax – (ax)² /2 + (ax)³ /3 – (ax)4 /4 + …….}/x
= Limx→0 {ax – a² x² /2 + a³ x³ /3 – a4 x4 /4 + …….}/x
= Limx→0 {a – a² x /2 + a³ x² /3 – a4 x³ /4 + …….}
= a – 0
= a
Given, Limx→0 {log(1 + ax)}/x
= Limx→0 {ax – (ax)² /2 + (ax)³ /3 – (ax)4 /4 + …….}/x
= Limx→0 {ax – a² x² /2 + a³ x³ /3 – a4 x4 /4 + …….}/x
= Limx→0 {a – a² x /2 + a³ x² /3 – a4 x³ /4 + …….}
= a – 0
= a
Q5. | The value of the limit Limx→0 (cos x)cot² x is |
A.1 |
|
B.e |
|
C.e1/2 |
|
D.e-1/2 |
Ans: e-1/2
Given, Limx→0 (cos x)cot² x
= Limx→0 (1 + cos x – 1)cot² x
= eLimx→0 (cos x – 1) × cot² x
= eLimx→0 (cos x – 1)/tan² x
= e-1/2
Given, Limx→0 (cos x)cot² x
= Limx→0 (1 + cos x – 1)cot² x
= eLimx→0 (cos x – 1) × cot² x
= eLimx→0 (cos x – 1)/tan² x
= e-1/2
Q6. | Then value of Limx→1 (1 + log x – x)}/(1 – 2x + x²) is |
A.0 |
|
B.1 |
|
C.1/2 |
|
D.-1/2 |
Ans: -1/2
Given, Limx→1 (1 + log x – x)}/(1 – 2x + x²)
= Limx→1 (1/x – 1)}/(-2 + 2x) {Using L. Hospital Rule}
= Limx→1 (1 – x)/{2x(x – 1)}
= Limx→1 (-1/2x)
= -1/2
Given, Limx→1 (1 + log x – x)}/(1 – 2x + x²)
= Limx→1 (1/x – 1)}/(-2 + 2x) {Using L. Hospital Rule}
= Limx→1 (1 – x)/{2x(x – 1)}
= Limx→1 (-1/2x)
= -1/2
Q7. | The value of limy→0 {(x + y) × sec (x + y) – x × sec x}/y is |
A.x × tan x × sec x |
|
B.x × tan x × sec x + x × sec x |
|
C.tan x × sec x + sec x |
|
D.x × tan x × sec x + sec x |
Ans: x × tan x × sec x + sec x
Given, limy→0 {(x + y) × sec (x + y) – x × sec x}/y
= limy→0 {x sec (x + y) + y sec (x + y) – x × sec x}/y
= limy→0 [x{ sec (x + y) – sec x} + y sec (x + y)]/y
= limy→0 x{ sec (x + y) – sec x}/y + limy→0 {y sec (x + y)}/y
= limy→0 x{1/cos (x + y) – 1/cos x}/y + limy→0 {y sec (x + y)}/y
= limy→0 [{cos x – cos (x + y)} × x/{y × cos (x + y) × cos x}] + limy→0 {y sec (x + y)}/y
= limy→0 [{2sin (x + y/2) × sin(y/2)} × 2x/{2y × cos (x + y) × cos x}] + limy→0 {y sec (x + y)}/y
= limy→0 {sin (x + y/2) × limy→0 {sin(y/2)/(2y/2)} × limy→0 { x/{y × cos (x + y) × cos x}] + sec x
= sin x × 1 × x/cos² x + sec x
= x × tan x × sec x + sec x
So, limy→0 {(x + y) × sec (x + y) – x × sec x}/y = x × tan x × sec x + sec x
Given, limy→0 {(x + y) × sec (x + y) – x × sec x}/y
= limy→0 {x sec (x + y) + y sec (x + y) – x × sec x}/y
= limy→0 [x{ sec (x + y) – sec x} + y sec (x + y)]/y
= limy→0 x{ sec (x + y) – sec x}/y + limy→0 {y sec (x + y)}/y
= limy→0 x{1/cos (x + y) – 1/cos x}/y + limy→0 {y sec (x + y)}/y
= limy→0 [{cos x – cos (x + y)} × x/{y × cos (x + y) × cos x}] + limy→0 {y sec (x + y)}/y
= limy→0 [{2sin (x + y/2) × sin(y/2)} × 2x/{2y × cos (x + y) × cos x}] + limy→0 {y sec (x + y)}/y
= limy→0 {sin (x + y/2) × limy→0 {sin(y/2)/(2y/2)} × limy→0 { x/{y × cos (x + y) × cos x}] + sec x
= sin x × 1 × x/cos² x + sec x
= x × tan x × sec x + sec x
So, limy→0 {(x + y) × sec (x + y) – x × sec x}/y = x × tan x × sec x + sec x
Q8. | Limx→0 (ex² – cos x)/x² is equals to |
A.0 |
|
B.1 |
|
C.2/3 |
|
D.3/2 |
Ans: 3/2
Given, Limx→0 (ex² – cos x)/x²
= Limx→0 (ex² – cos x – 1 + 1)/x²
= Limx→0 {(ex² – 1)/x² + (1 – cos x)}/x²
= Limx→0 {(ex² – 1)/x² + Limx→0 (1 – cos x)}/x²
= 1 + 1/2
= (2 + 1)/2
= 3/2
Given, Limx→0 (ex² – cos x)/x²
= Limx→0 (ex² – cos x – 1 + 1)/x²
= Limx→0 {(ex² – 1)/x² + (1 – cos x)}/x²
= Limx→0 {(ex² – 1)/x² + Limx→0 (1 – cos x)}/x²
= 1 + 1/2
= (2 + 1)/2
= 3/2
Q9. | The expansion of ax is |
A.ax = 1 + x/1! × (log a) + x² /2! × (log a)² + x³ /3! × (log a)³ + ……….. |
|
B.ax = 1 – x/1! × (log a) + x² /2! × (log a)² – x³ /3! × (log a)³ + ……….. |
|
C.ax = 1 + x/1 × (log a) + x² /2 × (log a)² + x³ /3 × (log a)³ + ……….. |
|
D.ax = 1 – x/1 × (log a) + x² /2 × (log a)² – x³ /3 × (log a)³ + ……….. |
Ans: ax = 1 + x/1! × (log a) + x² /2! × (log a)² + x³ /3! × (log a)³ + ………..
ax = 1 + x/1! × (log a) + x² /2! × (log a)² + x³ /3! × (log a)³ + ………..
ax = 1 + x/1! × (log a) + x² /2! × (log a)² + x³ /3! × (log a)³ + ………..
Q10. | The value of the limit Limn→0 (1 + an)b/n is |
A.ea |
|
B.eb |
|
C.eab |
|
D.ea/b |
Ans: eab
Given, Limn→0 (1 + an)b/n
= eLimn→0(an × b/n)
= eLimn→0(ab)
= eab
Given, Limn→0 (1 + an)b/n
= eLimn→0(an × b/n)
= eLimn→0(ab)
= eab
Q11. | The value of Limx→0 cos x/(1 + sin x) is |
A.0 |
|
B.-1 |
|
C.1 |
|
D.None of these |
Ans: 1
Given, Limx→0 cos x/(1 + sin x)
= cos 0/(1 + sin 0)
= 1/(1 + 0)
= 1/1
= 1
Given, Limx→0 cos x/(1 + sin x)
= cos 0/(1 + sin 0)
= 1/(1 + 0)
= 1/1
= 1
Q12. | Lim tanx→π/4 tan 2x × tan(π/4 – x) is |
A.0 |
|
B.1 |
|
C.1/2 |
|
D.3/2 |
Ans: 1/2
Given, Lim tanx→π/4 tan 2x × tan(π/4 – x)
= Lim tanh→0 tan 2(π/4 – x) × tan(-h)
= Lim tanh→0 -cot 2h/(-cot h)
= Lim tanh→0 tan h/tan 2h
= (1/2) × Lim tanh→0 (tan h/h)/(2h/tan 2h)
= (1/2) × {Lim tanh→0 (tan h/h)}/{Lim tanh→0 (2h/tan 2h)}
= (1/2) × 1
= 1/2
Given, Lim tanx→π/4 tan 2x × tan(π/4 – x)
= Lim tanh→0 tan 2(π/4 – x) × tan(-h)
= Lim tanh→0 -cot 2h/(-cot h)
= Lim tanh→0 tan h/tan 2h
= (1/2) × Lim tanh→0 (tan h/h)/(2h/tan 2h)
= (1/2) × {Lim tanh→0 (tan h/h)}/{Lim tanh→0 (2h/tan 2h)}
= (1/2) × 1
= 1/2
Q13. | Limx→2 (x³ – 6x² + 11x – 6)/(x² – 6x + 8) = |
A.0 |
|
B.1 |
|
C.1/2 |
|
D.Limit does not exist |
Ans: 1/2
When x = 2, the expression
(x³ – 6x² + 11x – 6)/(x² – 6x + 8) assumes the form 0/0
Now,
Limx→2 (x³ – 6x² + 11x – 6)/(x² – 6x + 8) = Limx→2 {(x – 1) × (x – 2) × (x – 3)}/{(x – 2) × (x – 4)}
= Limx→2 {(x – 1) × (x – 3)}/(x – 4)
= {(2 – 1) × (2 – 3)}/(2 – 4)
= 1/2
When x = 2, the expression
(x³ – 6x² + 11x – 6)/(x² – 6x + 8) assumes the form 0/0
Now,
Limx→2 (x³ – 6x² + 11x – 6)/(x² – 6x + 8) = Limx→2 {(x – 1) × (x – 2) × (x – 3)}/{(x – 2) × (x – 4)}
= Limx→2 {(x – 1) × (x – 3)}/(x – 4)
= {(2 – 1) × (2 – 3)}/(2 – 4)
= 1/2
Q14. | The value of the limit Limx→2 (x – 2)/√(2 – x) is |
A.0 |
|
B.1 |
|
C.-1 |
|
D.2 |
Ans: 0
Given, Limx→2 (x – 2)/√(2 – x)
= Limx→2 -(2 – x)/√(2 – x)
= Limx→2 -{√(2 – x) × √(2 – x)}/√(2 – x)
= Limx→2 -√(2 – x)
= -√(2 – 2)
= 0
Given, Limx→2 (x – 2)/√(2 – x)
= Limx→2 -(2 – x)/√(2 – x)
= Limx→2 -{√(2 – x) × √(2 – x)}/√(2 – x)
= Limx→2 -√(2 – x)
= -√(2 – 2)
= 0
Q15. | The derivative of the function f(x) = 3x³ – 2x³ + 5x – 1 at x = -1 is |
A.0 |
|
B.1 |
|
C.-18 |
|
D.18 |
Ans: 18
Given, function f(x) = 3x³ – 2x² + 5x – 1
Differentiate w.r.t. x, we get
df(x)/dx = 3 × 3 × x² – 2 × 2 × x + 5
⇒ df(x)/dx = 9x² – 4x + 5
⇒ {df(x)/dx}x =-1 = 9 × (-1)² – 4 × (-1) + 5
⇒ {df(x)/dx}x =-1 = 9 + 4 + 5
⇒ {df(x)/dx}x =-1 = 18
Given, function f(x) = 3x³ – 2x² + 5x – 1
Differentiate w.r.t. x, we get
df(x)/dx = 3 × 3 × x² – 2 × 2 × x + 5
⇒ df(x)/dx = 9x² – 4x + 5
⇒ {df(x)/dx}x =-1 = 9 × (-1)² – 4 × (-1) + 5
⇒ {df(x)/dx}x =-1 = 9 + 4 + 5
⇒ {df(x)/dx}x =-1 = 18
Q16. | Limx→0 sin²(x/3)/x² is equals to |
A.1/2 |
|
B.1/3 |
|
C.1/4 |
|
D.1/9 |
Ans: 1/9
Given, Limx→0 sin² (x/3)/ x²
= Limx→0 [sin² (x/3)/ (x/3)² × {(x/3)² /x²}]
= Limx→0 [{sin (x/3)/ (x/3)}² × {(x² /9)/x²}]
= 1 × 1/9
= 1/9
Given, Limx→0 sin² (x/3)/ x²
= Limx→0 [sin² (x/3)/ (x/3)² × {(x/3)² /x²}]
= Limx→0 [{sin (x/3)/ (x/3)}² × {(x² /9)/x²}]
= 1 × 1/9
= 1/9
Q17. | The expansion of ax is |
A.ax = 1 + x/1! × (log a) + x² /2! × (log a)² + x³ /3! × (log a)³ + ……….. |
|
B.ax = 1 – x/1! × (log a) + x² /2! × (log a)² – x³ /3! × (log a)³ + ……….. |
|
C.ax = 1 + x/1 × (log a) + x² /2 × (log a)² + x³ /3 × (log a)³ + ……….. |
|
D.ax = 1 – x/1 × (log a) + x² /2 × (log a)² – x³ /3 × (log a)³ + ……….. |
Ans: ax = 1 + x/1! × (log a) + x² /2! × (log a)² + x³ /3! × (log a)³ + ………..
ax = 1 + x/1! × (log a) + x² /2! × (log a)² + x³ /3! × (log a)³ + ………..
ax = 1 + x/1! × (log a) + x² /2! × (log a)² + x³ /3! × (log a)³ + ………..
Q18. | Differentiation of cos √x with respect to x is |
A.sin x /2√x |
|
B.-sin x /2√x |
|
C.sin √x /2√x |
|
D.-sin √x /2√x |
Ans: -sin √x /2√x
Let y = cos √x
Put u = √x
du/dx = 1/2√x
Now, y = cos u
dy/du = -sin u
dy/dx = (dy/du) × (du/dx)
= -sin u × (1/2√x)
= -sin √x /2√x
Let y = cos √x
Put u = √x
du/dx = 1/2√x
Now, y = cos u
dy/du = -sin u
dy/dx = (dy/du) × (du/dx)
= -sin u × (1/2√x)
= -sin √x /2√x
Q19. | Differentiation of log(sin x) is |
A.cosec x |
|
B.cot x |
|
C.sin x |
|
D.cos x |
Ans: cot x
Let y = log(sin x)
Again let u = sin x
du/dx = cos x
Now, y = log u
dy/du = 1/u = 1/sin x
Now, dy/dx = (dy/du) × (du/dx)
⇒ dy/dx = (1/sin x) × cos x
⇒ dy/dx = cos x/sin x
⇒ dy/dx = cot x
Let y = log(sin x)
Again let u = sin x
du/dx = cos x
Now, y = log u
dy/du = 1/u = 1/sin x
Now, dy/dx = (dy/du) × (du/dx)
⇒ dy/dx = (1/sin x) × cos x
⇒ dy/dx = cos x/sin x
⇒ dy/dx = cot x
Q20. | Limx→∞ {(x + 5)/(x + 1)}x equals |
A.e² |
|
B.e4 |
|
C.e6 |
|
D.e8 |
Ans: e6
Given, Limx→∞ {(x + 5)/(x + 1)}x
= Limx→∞ {1 + 6/(x + 1)}x
= eLimx→∞6x/(x + 1)
= eLimx→∞ 6/(1 + 1/x)
= e6/(1 + 1/∞)
= e6/(1 + 0)
= e6
Given, Limx→∞ {(x + 5)/(x + 1)}x
= Limx→∞ {1 + 6/(x + 1)}x
= eLimx→∞6x/(x + 1)
= eLimx→∞ 6/(1 + 1/x)
= e6/(1 + 1/∞)
= e6/(1 + 0)
= e6
MCQ Questions for Class 11 Maths
-
MCQ Questions for Class 11 Maths Chapter 1 Sets
MCQ Questions for Class 11 Maths Chapter 2 Relations and Functions
MCQ Questions for Class 11 Maths Chapter 3 Trigonometric Functions
MCQ Questions for Class 11 Maths Chapter 4 Principle of Mathematical Induction
MCQ Questions for Class 11 Maths Chapter 5 Complex Numbers and Quadratic Equations
MCQ Questions for Class 11 Maths Chapter 6 Linear Inequalities
MCQ Questions for Class 11 Maths Chapter 7 Permutations and Combinations
MCQ Questions for Class 11 Maths Chapter 8 Binomial Theorem
MCQ Questions for Class 11 Maths Chapter 9 Sequences and Series
MCQ Questions for Class 11 Maths Chapter 10 Straight Lines
MCQ Questions for Class 11 Maths Chapter 11 Conic Sections
MCQ Questions for Class 11 Maths Chapter 12 Introduction to Three Dimensional Geometry
MCQ Questions for Class 11 Maths Chapter 13 Limits and Derivatives
MCQ Questions for Class 11 Maths Chapter 14 Mathematical Reasoning
MCQ Questions for Class 11 Maths Chapter 15 Statistics
MCQ Questions for Class 11 Maths Chapter 16 Probability
Post a Comment
इस पेज / वेबसाइट की त्रुटियों / गलतियों को यहाँ दर्ज कीजिये
(Errors/mistakes on this page/website enter here)