MCQ Questions for Class 11 Maths Chapter 7 Permutations and Combinations with Answers

Permutations and Combinations Class 11 Maths MCQs Questions with Answers
Check the below NCERT MCQ Questions for Class 11 Maths Chapter 7 Permutations and Combinations with Answers Pdf free download. MCQ Questions for Class 11 Maths with Answers were prepared based on the latest exam pattern. We have Provided Permutations and Combinations Class 11 Maths MCQs Questions with Answers to help students understand the concept very well.
Class 11 Maths Chapter 7 Quiz
Class 11 Maths Chapter 7 MCQ Online Test
You can refer to NCERT Solutions for Class 11 Maths Chapter 7 Permutations and Combinations to revise the concepts in the syllabus effectively and improve your chances of securing high marks in your board exams.
Permutations and Combinations Class 11 Maths MCQ online test
Q1. | It is required to seat 5 men and 4 women in a row so that the women occupy the even places. The number of ways such arrangements are possible are |
A.8820 |
|
B.2880 |
|
C.2088 |
|
D.2808 |
Ans: 2880
Total number of persons are 9 in which there are 5 men and 4 women
So total number of place = 9
Now women seat in even place
So total number of arrangement = 4! (_W_W_W_W_) (W-Woman)
Men sit in odd place
So total number of arrangement = 5! (MWMWMWMWM) (M-Man)
Now Total number of arrangement = 5! × 4! = 120 × 24 = 2880
Total number of persons are 9 in which there are 5 men and 4 women
So total number of place = 9
Now women seat in even place
So total number of arrangement = 4! (_W_W_W_W_) (W-Woman)
Men sit in odd place
So total number of arrangement = 5! (MWMWMWMWM) (M-Man)
Now Total number of arrangement = 5! × 4! = 120 × 24 = 2880
Q2. | Six boys and six girls sit along a line alternately in x ways and along a circle (again alternatively in y ways), then |
A.x = y |
|
B.y = 12x |
|
C.x = 10y |
|
D.x = 12y |
Ans: x = 12y
Given, six boys and six girls sit along a line alternately in x ways and along a circle
((again alternatively in y ways).
Now, x = 6! × 6! + 6! × 6!
⇒ x = 2 × (6!)2
and y = 5! × 6!
Now, x/y = {2 × (6!)2}/(5! × 6!)
⇒ x/y = {2 × 6! × 6! }/(5! × 6!)
⇒ x/y = {2 × 6!}/5!
⇒ x/y = {2 × 6 × 5!}/5!
⇒ x/y = 12
⇒ x = 12y
Given, six boys and six girls sit along a line alternately in x ways and along a circle
((again alternatively in y ways).
Now, x = 6! × 6! + 6! × 6!
⇒ x = 2 × (6!)2
and y = 5! × 6!
Now, x/y = {2 × (6!)2}/(5! × 6!)
⇒ x/y = {2 × 6! × 6! }/(5! × 6!)
⇒ x/y = {2 × 6!}/5!
⇒ x/y = {2 × 6 × 5!}/5!
⇒ x/y = 12
⇒ x = 12y
Q3. | How many 3-letter words with or without meaning, can be formed out of the letters of the word, LOGARITHMS, if repetition of letters is not allowed |
A.720 |
|
B.420 |
|
C.none of these |
|
D.5040 |
Ans: 720
The word LOGARITHMS has 10 different letters.
Hence, the number of 3-letter words(with or without meaning) formed by using these letters
= 10P3
= 10 × 9 × 8
= 720
The word LOGARITHMS has 10 different letters.
Hence, the number of 3-letter words(with or without meaning) formed by using these letters
= 10P3
= 10 × 9 × 8
= 720
Q4. | A committee of 7 has to be formed from 9 boys and 4 girls. In how many ways can this be done when the committee consists of at least 3 girls |
A.588 |
|
B.885 |
|
C.858 |
|
D.None of these |
Ans: 588
Given number of boys = 9
Number of girls = 4
Now, A committee of 7 has to be formed from 9 boys and 4 girls.
Now, the committee consists of atleast 3 girls:
4C3 × 9C4 + 4C4 × 9C3
= [{4! / (3! × 1!)} × {9! / (4! × 5!)}] + 9C3
= [{(4 × 3!) /3!} × {(9 × 8 × 7 × 6 × 5!) / (4! × 5!)}] + 9! /(3! × 6!)
= [4 × {(9 × 8 × 7 × 6) / 4!}] + (9×8×7×6!)/(3! × 6!)
= [{4 × (9 × 8 × 7 × 6)} / (4 × 3 × 2 × 1)] + (9 × 8 × 7)/3!
= (9 × 8 × 7) + (9 × 8 × 7)/(3 × 2 × 1)
= 504 + (504/6)
= 504 + 84
= 588
Given number of boys = 9
Number of girls = 4
Now, A committee of 7 has to be formed from 9 boys and 4 girls.
Now, the committee consists of atleast 3 girls:
4C3 × 9C4 + 4C4 × 9C3
= [{4! / (3! × 1!)} × {9! / (4! × 5!)}] + 9C3
= [{(4 × 3!) /3!} × {(9 × 8 × 7 × 6 × 5!) / (4! × 5!)}] + 9! /(3! × 6!)
= [4 × {(9 × 8 × 7 × 6) / 4!}] + (9×8×7×6!)/(3! × 6!)
= [{4 × (9 × 8 × 7 × 6)} / (4 × 3 × 2 × 1)] + (9 × 8 × 7)/3!
= (9 × 8 × 7) + (9 × 8 × 7)/(3 × 2 × 1)
= 504 + (504/6)
= 504 + 84
= 588
Q5. | In how many ways can 12 people be divided into 3 groups where 4 persons must be there in each group? |
A.12!/{3! × (4!)³} |
|
B.12!/(4!)³ |
|
C.Insufficient data |
|
D.none of these |
Ans: 12!/{3! × (4!)³}
Number of ways in which
m × n”>
m × n distinct things can be divided equally into n
n”> groups
= (mn)!/{n! × (m!)n }
Given, 12(3 × 4) people needs to be divided into 3 groups where 4 persons must be there in each group.
So, the required number of ways = (12)!/{3! × (4!)n}
Number of ways in which
m × n”>
m × n distinct things can be divided equally into n
n”> groups
= (mn)!/{n! × (m!)n }
Given, 12(3 × 4) people needs to be divided into 3 groups where 4 persons must be there in each group.
So, the required number of ways = (12)!/{3! × (4!)n}
Q6. | How many factors are 25 × 36 × 5² are perfect squares |
A.24 |
|
B.12 |
|
C.16 |
|
D.22 |
Ans: 24
Any factors of 25 × 36 × 5² which is a perfect square will be of the form 2a × 3b × 5c
where a can be 0 or 2 or 4, So there are 3 ways
b can be 0 or 2 or 4 or 6, So there are 4 ways
a can be 0 or 2, So there are 2 ways
So, the required number of factors = 3 × 4 × 2 = 24
Any factors of 25 × 36 × 5² which is a perfect square will be of the form 2a × 3b × 5c
where a can be 0 or 2 or 4, So there are 3 ways
b can be 0 or 2 or 4 or 6, So there are 4 ways
a can be 0 or 2, So there are 2 ways
So, the required number of factors = 3 × 4 × 2 = 24
Q7. | If ⁿC15 = ⁿC6 then the value of ⁿC21 is |
A.0 |
|
B.1 |
|
C.21 |
|
D.None of these |
Ans: 1
We know that
if ⁿCr1 = ⁿCr2
⇒ n = r1 + r2
Given, ⁿC15 = ⁿC6
⇒ n = 15 + 6
⇒ n = 21
Now, 21C21 = 1
We know that
if ⁿCr1 = ⁿCr2
⇒ n = r1 + r2
Given, ⁿC15 = ⁿC6
⇒ n = 15 + 6
⇒ n = 21
Now, 21C21 = 1
Q8. | If n+1C3 = 2 ⁿC2, then the value of n is |
A.3 |
|
B.4 |
|
C.5 |
|
D.6 |
Ans: 6
Given, n+1C3 = 2 ⁿC2
⇒ [(n + 1)!/{(n + 1 – 3) × 3!}] = 2n!/{(n – 2) × 2!}
⇒ [{n × n!}/{(n – 2) × 3!}] = 2n!/{(n – 2) × 2}
⇒ n/3! = 1
⇒ n/6 = 1
⇒ n = 6
Given, n+1C3 = 2 ⁿC2
⇒ [(n + 1)!/{(n + 1 – 3) × 3!}] = 2n!/{(n – 2) × 2!}
⇒ [{n × n!}/{(n – 2) × 3!}] = 2n!/{(n – 2) × 2}
⇒ n/3! = 1
⇒ n/6 = 1
⇒ n = 6
Q9. | There are 15 points in a plane, no two of which are in a straight line except 4, all of which are in a straight line. The number of triangle that can be formed by using these 15 points is |
A.15C3 |
|
B.490 |
|
C.451 |
|
D.415 |
Ans: 451
The required number of triangle = 15C3 – 4C3 = 455 – 4 = 451
The required number of triangle = 15C3 – 4C3 = 455 – 4 = 451
Q10. | In how many ways in which 8 students can be sated in a circle is |
A.40302 |
|
B.40320 |
|
C.5040 |
|
D.50040 |
Ans: 5040
The number of ways in which 8 students can be sated in a circle = ( 8 – 1)!
= 7!
= 5040
The number of ways in which 8 students can be sated in a circle = ( 8 – 1)!
= 7!
= 5040
Q11. | Let R = {a, b, c, d} and S = {1, 2, 3}, then the number of functions f, from R to S, which are onto is |
A.80 |
|
B.16 |
|
C.24 |
|
D.36 |
Ans: 36
Total number of functions = 34 = 81
All the four elements can be mapped to exactly one element in 3 ways, and exactly 3
elements in 3(24 – 2) = 3(16 – 2) = 3 × 14 = 42
Thus the number of onto functions = 81 – 42 -3 = 81 – 45 = 36
Total number of functions = 34 = 81
All the four elements can be mapped to exactly one element in 3 ways, and exactly 3
elements in 3(24 – 2) = 3(16 – 2) = 3 × 14 = 42
Thus the number of onto functions = 81 – 42 -3 = 81 – 45 = 36
Q12. | If (1 + x)ⁿ = C0 + C1 x + C2 x² + …………..+ Cn xⁿ, then the value of C0² + C1² + C2² + …………..+ Cnⁿ = ²ⁿCn is |
A.(2n)!/(n!) |
|
B.(2n)!/(n! × n!) |
|
C.(2n)!/(n! × n!)2 |
|
D.None of these |
Ans: (2n)!/(n! × n!)
Given, (1 + x)ⁿ = C0 + C1 x + C2 x² + ………….. + Cn xⁿ ………. 1
and (1 + x)ⁿ = C0 xⁿ + C1 xn-1 + C2 xn-2 + ………….. Cr xn-r + ………. + Cn-1 x + Cn ……….. 2
Multiply 1 and 2, we get
(1 + x)²ⁿ = (C0 + C1 x + C2 x² + …………..+ Cn xⁿ) × (C0 xⁿ + C1 xn-1 + C2 xn-2 + ………….. Cr xn-r + ………. + Cn-1 x + Cn)
Now, equating the coefficient of xn on both side, we get
C0² + C1² + C2² + …………..+ Cnⁿ = ²ⁿCn = (2n)!/(n! × n!)
Given, (1 + x)ⁿ = C0 + C1 x + C2 x² + ………….. + Cn xⁿ ………. 1
and (1 + x)ⁿ = C0 xⁿ + C1 xn-1 + C2 xn-2 + ………….. Cr xn-r + ………. + Cn-1 x + Cn ……….. 2
Multiply 1 and 2, we get
(1 + x)²ⁿ = (C0 + C1 x + C2 x² + …………..+ Cn xⁿ) × (C0 xⁿ + C1 xn-1 + C2 xn-2 + ………….. Cr xn-r + ………. + Cn-1 x + Cn)
Now, equating the coefficient of xn on both side, we get
C0² + C1² + C2² + …………..+ Cnⁿ = ²ⁿCn = (2n)!/(n! × n!)
Q13. | The total number of 9 digit numbers of different digits is |
A.99! |
|
B.9! |
|
C.8 × 9! |
|
D.9 × 9! |
Ans: 9 × 9!
Given digit in the number = 9
1st place can be filled = 9 ways = 9 (from 1-9 any number can be placed at first position)
2nd place can be filled = 9 ways (from 0-9 any number can be placed except the number which is placed at the first position)
3rd place can be filled = 8 ways
4th place can be filled = 7 ways
5th place can be filled = 6 ways
6th place can be filled = 5 ways
7th place can be filled = 4 ways
8th place can be filled = 3 ways
9th place can be filled = 2 ways
So total number of ways = 9 × 9 × 8 × 7 × 6 × 5 × 4 × 3 × 2
= 9 × 9!
Given digit in the number = 9
1st place can be filled = 9 ways = 9 (from 1-9 any number can be placed at first position)
2nd place can be filled = 9 ways (from 0-9 any number can be placed except the number which is placed at the first position)
3rd place can be filled = 8 ways
4th place can be filled = 7 ways
5th place can be filled = 6 ways
6th place can be filled = 5 ways
7th place can be filled = 4 ways
8th place can be filled = 3 ways
9th place can be filled = 2 ways
So total number of ways = 9 × 9 × 8 × 7 × 6 × 5 × 4 × 3 × 2
= 9 × 9!
Q14. | The number of ways in which 6 men add 5 women can dine at a round table, if no two women are to sit together, is given by |
A.30 |
|
B.5 ! × 5 ! |
|
C.5 ! × 4 ! |
|
D.7 ! × 5 ! |
Ans: 5 ! × 5 !
Again, 6 girls can be arranged among themselves in 5! ways in a circle.
So, the number of arrangements where boys and girls sit attentively in a circle = 5! × 5!
Again, 6 girls can be arranged among themselves in 5! ways in a circle.
So, the number of arrangements where boys and girls sit attentively in a circle = 5! × 5!
Q15. | There are 15 points in a plane, no two of which are in a straight line except 4, all of which are in a straight line. The number of triangle that can be formed by using these 15 points is |
A.15C3 |
|
B.490 |
|
C.451 |
|
D.415 |
Ans: 451
The required number of triangle = 15C3 – 4C3 = 455 – 4 = 451
The required number of triangle = 15C3 – 4C3 = 455 – 4 = 451
Q16. | The number of 6-digit numbers can be formed from the digits 0, 1, 3, 5, 7 and 9 which are divisible by 10 and no digit is repeated are |
A.110 |
|
B.120 |
|
C.130 |
|
D.140 |
Ans: 120
A number is divisible by 10 if the unit digit of the number is 0.
Given digits are 0, 1, 3, 5, 7, 9
Now we fix digit 0 at unit place of the number.
Remaining 5 digits can be arranged in 5! ways
So, total 6-digit numbers which are divisible by 10 = 5! = 120
A number is divisible by 10 if the unit digit of the number is 0.
Given digits are 0, 1, 3, 5, 7, 9
Now we fix digit 0 at unit place of the number.
Remaining 5 digits can be arranged in 5! ways
So, total 6-digit numbers which are divisible by 10 = 5! = 120
Q17. | 6 men and 4 women are to be seated in a row so that no two women sit together. The number of ways they can be seated is |
A.604800 |
|
B.17280 |
|
C.120960 |
|
D.518400 |
Ans: 604800
6 men can be sit as
× M × M × M × M × M × M ×
Now, there are 7 spaces and 4 women can be sit as 7P4 = 7P3 = 7!/3! = (7 × 6 × 5 × 4 × 3!)/3!
= 7 × 6 × 5 × 4 = 840
Now, total number of arrangement = 6! × 840
= 720 × 840
= 604800
6 men can be sit as
× M × M × M × M × M × M ×
Now, there are 7 spaces and 4 women can be sit as 7P4 = 7P3 = 7!/3! = (7 × 6 × 5 × 4 × 3!)/3!
= 7 × 6 × 5 × 4 = 840
Now, total number of arrangement = 6! × 840
= 720 × 840
= 604800
Q18. | A committee of 7 has to be formed from 9 boys and 4 girls. In how many ways can this be done when the committee consists of exactly 3 girls |
A.540 |
|
B.405 |
|
C.504 |
|
D.None of these |
Ans: 504
Given number of boys = 9
Number of girls = 4
Now, A committee of 7 has to be formed from 9 boys and 4 girls.
Now, If in committee consist of exactly 3 girls:
4C3 × 9C4
= {4! / (3! × 1!)} × {9! / (4! × 5!)}
= {(4×3!) /3!} × {(9 × 8 × 7 × 6 × 5!) / (4! × 5!)}
= 4 × {(9 × 8 × 7 × 6) / 4!}
= {4 × (9 × 8 × 7 × 6)} / (4 × 3 × 2 × 1)
= 9 × 8 × 7
= 504
Given number of boys = 9
Number of girls = 4
Now, A committee of 7 has to be formed from 9 boys and 4 girls.
Now, If in committee consist of exactly 3 girls:
4C3 × 9C4
= {4! / (3! × 1!)} × {9! / (4! × 5!)}
= {(4×3!) /3!} × {(9 × 8 × 7 × 6 × 5!) / (4! × 5!)}
= 4 × {(9 × 8 × 7 × 6) / 4!}
= {4 × (9 × 8 × 7 × 6)} / (4 × 3 × 2 × 1)
= 9 × 8 × 7
= 504
Q19. | How many factors are 25 × 36 × 5² are perfect squares |
A.24 |
|
B.12 |
|
C.16 |
|
D.22 |
Ans: 24
Any factors of 25 × 36 × 5² which is a perfect square will be of the form 2a × 3b × 5c
where a can be 0 or 2 or 4, So there are 3 ways
b can be 0 or 2 or 4 or 6, So there are 4 ways
a can be 0 or 2, So there are 2 ways
So, the required number of factors = 3 × 4 × 2 = 24
Any factors of 25 × 36 × 5² which is a perfect square will be of the form 2a × 3b × 5c
where a can be 0 or 2 or 4, So there are 3 ways
b can be 0 or 2 or 4 or 6, So there are 4 ways
a can be 0 or 2, So there are 2 ways
So, the required number of factors = 3 × 4 × 2 = 24
Q20. | The value of 2 × P(n, n-2) is |
A.n |
|
B.2n |
|
C.n! |
|
D.2n! |
Ans: n!
Given, 2 × P(n, n – 2)
= 2 × {n!/(n – (n – 2))}
= 2 × {n!/(n – n + 2)}
= 2 × (n!/2)
= n!
So, 2 × P(n, n – 2) = n!
Given, 2 × P(n, n – 2)
= 2 × {n!/(n – (n – 2))}
= 2 × {n!/(n – n + 2)}
= 2 × (n!/2)
= n!
So, 2 × P(n, n – 2) = n!
MCQ Questions for Class 11 Maths
-
MCQ Questions for Class 11 Maths Chapter 1 Sets
MCQ Questions for Class 11 Maths Chapter 2 Relations and Functions
MCQ Questions for Class 11 Maths Chapter 3 Trigonometric Functions
MCQ Questions for Class 11 Maths Chapter 4 Principle of Mathematical Induction
MCQ Questions for Class 11 Maths Chapter 5 Complex Numbers and Quadratic Equations
MCQ Questions for Class 11 Maths Chapter 6 Linear Inequalities
MCQ Questions for Class 11 Maths Chapter 7 Permutations and Combinations
MCQ Questions for Class 11 Maths Chapter 8 Binomial Theorem
MCQ Questions for Class 11 Maths Chapter 9 Sequences and Series
MCQ Questions for Class 11 Maths Chapter 10 Straight Lines
MCQ Questions for Class 11 Maths Chapter 11 Conic Sections
MCQ Questions for Class 11 Maths Chapter 12 Introduction to Three Dimensional Geometry
MCQ Questions for Class 11 Maths Chapter 13 Limits and Derivatives
MCQ Questions for Class 11 Maths Chapter 14 Mathematical Reasoning
MCQ Questions for Class 11 Maths Chapter 15 Statistics
MCQ Questions for Class 11 Maths Chapter 16 Probability
Post a Comment
इस पेज / वेबसाइट की त्रुटियों / गलतियों को यहाँ दर्ज कीजिये
(Errors/mistakes on this page/website enter here)