MCQ Questions for Class 11 Maths Chapter 4 Principle of Mathematical Induction with Answers

MCQ Questions for Class 11 Maths Chapter 4 Principle of Mathematical Induction with Answers 

MCQ Questions for Class11 Maths Chapter 4 Principle of Mathematical Induction

Principle of Mathematical Induction Class 11 Maths MCQs Questions with Answers

Check the below NCERT MCQ Questions for Class 11 Maths Chapter 4 Principle of Mathematical Induction with Answers Pdf free download. MCQ Questions for Class 11 Maths with Answers were prepared based on the latest exam pattern. We have Provided Principle of Mathematical Induction Class 11 Maths MCQs Questions with Answers to help students understand the concept very well.

Class 11 Maths Chapter 4 Quiz

Class 11 Maths Chapter 4 MCQ Online Test


You can refer to NCERT Solutions for Class 11 Maths Chapter 4 Principle of Mathematical Induction to revise the concepts in the syllabus effectively and improve your chances of securing high marks in your board exams.

Principle of Mathematical Induction Class 11 Maths MCQ online test

Q1. For all n∈N, 3n5 + 5n³ + 7n is divisible by
A.5
B.15
C.10
D.3
Ans: 15
Given number = 3n5 + 5n² + 7n
Let n = 1, 2, 3, 4, ……..
3n5 + 5n³ + 7n = 3 × 1² + 5 × 1³ + 7 × 1 = 3 + 5 + 7 = 15
3n5 + 5n³ + 7n = 3 × 25 + 5 × 2³ + 7 × 2 = 3 × 32 + 5 × 8 + 7 × 2 = 96 + 40 + 14 = 150 = 15 × 10
3n5 + 5n³ + 7n = 3 × 35 + 5 × 3³ + 7 × 3 = 3 × 243 + 5 × 27 + 7 × 3 = 729 + 135 + 21 = 885 = 15 × 59
Since, all these numbers are divisible by 15 for n = 1, 2, 3, …..
So, the given number is divisible by 15

Q2. {1 – (1/2)}{1 – (1/3)}{1 – (1/4)} ……. {1 – 1/(n + 1)} =
A.1/(n + 1) for all n ∈ N.
B.1/(n + 1) for all n ∈ R
C.n/(n + 1) for all n ∈ N.
D.n/(n + 1) for all n ∈ R
Ans: 1/(n + 1) for all n ∈ N.
Let the given statement be P(n). Then,
P(n): {1 – (1/2)}{1 – (1/3)}{1 – (1/4)} ……. {1 – 1/(n + 1)} = 1/(n + 1).
When n = 1, LHS = {1 – (1/2)} = ½ and RHS = 1/(1 + 1) = ½.
Therefore LHS = RHS.
Thus, P(1) is true.
Let P(k) be true. Then,
P(k): {1 – (1/2)}{1 – (1/3)}{1 – (1/4)} ……. [1 – {1/(k + 1)}] = 1/(k + 1)
Now, [{1 – (1/2)}{1 – (1/3)}{1 – (1/4)} ……. [1 – {1/(k + 1)}] ∙ [1 – {1/(k + 2)}]
= [1/(k + 1)] ∙ [{(k + 2 ) – 1}/(k + 2)}]
= [1/(k + 1)] ∙ [(k + 1)/(k + 2)]
= 1/(k + 2)
Therefore p(k + 1): [{1 – (1/2)}{1 – (1/3)}{1 – (1/4)} ……. [1 – {1/(k + 1)}] = 1/(k + 2)
⇒ P(k + 1) is true, whenever P(k) is true.
Thus, P(1) is true and P(k + 1) is true, whenever P(k) is true.
Hence, by the principle of mathematical induction, P(n) is true for all n ∈ N.

Q3. For all n ∈ N, 32n + 7 is divisible by
A.8
B.3
C.11
D.non of these
Ans: 8
Given number = 32n + 7
Let n = 1, 2, 3, 4, ……..
32n + 7 = 3² + 7 = 9 + 7 = 16
32n + 7 = 34 + 7 = 81 + 7 = 88
32n + 7 = 36 + 7 = 729 + 7 = 736
Since, all these numbers are divisible by 8 for n = 1, 2, 3, …..
So, the given number is divisible by 8

Q4. The sum of the series 1 + 2 + 3 + 4 + 5 + ………..n is
A.n(n + 1)
B.(n + 1)/2
C.n/2
D.n(n + 1)/2
Ans: n(n + 1)/2
Given, series is series 1 + 2 + 3 + 4 + 5 + ………..n
Sum = n(n + 1)/2

Q5. The sum of the series 1² + 2² + 3² + ……….. n² is
A.n(n + 1) (2n + 1)
B.n(n + 1) (2n + 1)/2
C.n(n + 1) (2n + 1)/3
D.n(n + 1) (2n + 1)/6
Ans: n(n + 1) (2n + 1)/6
Given, series is 1² + 2² + 3² + ……….. n²
Sum = n(n + 1)(2n + 1)/6

Q6. For all positive integers n, the number n(n² − 1) is divisible by:
A.36
B.24
C.6
D.16
Ans: 6
Given,
number = n(n² − 1)
Let n = 1, 2, 3, 4….
n(n² – 1) = 1(1 – 1) = 0
n(n² – 1) = 2(4 – 1) = 2 × 3 = 6
n(n² – 1) = 3(9 – 1) = 3 × 8 = 24
n(n² – 1) = 4(16 – 1) = 4 × 15 = 60
Since all these numbers are divisible by 6 for n = 1, 2, 3,……..
So, the given number is divisible 6

Q7. If n is an odd positive integer, then aⁿ + bⁿ is divisible by :
A.a² + b²
B.a + b
C.a – b
D.none of these
Ans: a + b
Given number = aⁿ + bⁿ
Let n = 1, 3, 5, ……..
aⁿ + bⁿ = a + b
aⁿ + bⁿ = a³ + b³ = (a + b) × (a² + b² + ab) and so on.
Since, all these numbers are divisible by (a + b) for n = 1, 3, 5,…..
So, the given number is divisible by (a + b)

Q8. n(n + 1) (n + 5) is a multiple of ____ for all n ∈ N
A.2
B.3
C.5
D.7
Ans: 3
Let P(n): n(n + 1)(n + 5) is a multiple of 3.
For n = 1, the given expression becomes (1 × 2 × 6) = 12, which is a multiple of 3.
So, the given statement is true for n = 1, i.e. P(1) is true.
Let P(k) be true. Then,
P(k): k(k + 1)(k + 5) is a multiple of 3
⇒ K(k + 1) (k + 5) = 3m for some natural number m, …… (i)
Now, (k + 1) (k + 2) (k + 6) = (k + 1) (k + 2)k + 6(k + 1) (k + 2)
= k(k + 1) (k + 2) + 6(k + 1) (k + 2)
= k(k + 1) (k + 5 – 3) + 6(k + 1) (k + 2)
= k(k + 1) (k + 5) – 3k(k + 1) + 6(k + 1) (k + 2)
= k(k + 1) (k + 5) + 3(k + 1) (k +4) [on simplification]
= 3m + 3(k + 1 ) (k + 4) [using (i)]
= 3[m + (k + 1) (k + 4)], which is a multiple of 3
⇒ P(k + 1) (k + 1 ) (k + 2) (k + 6) is a multiple of 3
⇒ P(k + 1) is true, whenever P(k) is true.
Thus, P(1) is true and P(k + 1) is true, whenever P(k) is true.
Hence, by the principle of mathematical induction, P(n) is true for all n ∈ N.

Q9. For any natural number n, 7ⁿ – 2ⁿ is divisible by
A.3
B.4
C.5
D.7
Ans: 5
Given, 7ⁿ – 2ⁿ
Let n = 1
7ⁿ – 2ⁿ = 71 – 21 = 7 – 2 = 5
which is divisible by 5
Let n = 2
7ⁿ – 2ⁿ = 72 – 22 = 49 – 4 = 45
which is divisible by 5
Let n = 3
7ⁿ – 2ⁿ = 7³ – 2³ = 343 – 8 = 335
which is divisible by 5
Hence, for any natural number n, 7ⁿ – 2ⁿ is divisible by 5

Q10. The sum of the series 1³ + 2³ + 3³ + ………..n³ is
A.{(n + 1)/2}²
B.{n/2}²
C.n(n + 1)/2
D.{n(n + 1)/2}²
Ans: 4Q 11.12343Q 12.12343Q 13.12342Q 14.
Q11. (1² + 2² + …… + n²) _____ for all values of n ∈ N
A.= n³/3
B.< n³/3
C.> n³/3
D.None of these
Ans: > n³/3
Let P(n): (1² + 2² + ….. + n²) > n³/3.
When = 1, LHS = 1² = 1 and RHS = 1³/3 = 1/3.
Since 1 > 1/3, it follows that P(1) is true.
Let P(k) be true. Then,
P(k): (1² + 2² + ….. + k² ) > k³/3 …. (i)
Now,
1² + 2² + ….. + k²
+ (k + 1)²
= {1² + 2² + ….. + k² + (k + 1)²
> k³/3 + (k + 1)³ [using (i)]
= 1/3 ∙ (k³ + 3 + (k + 1)²) = 1/3 ∙ {k² + 3k² + 6k + 3}
= 1/3[k³ + 1 + 3k(k + 1) + (3k + 2)]
= 1/3 ∙ [(k + 1)³ + (3k + 2)]
> 1/3(k + 1)³
P(k + 1):
1² + 2² + ….. + k² + (k + 1)²
> 1/3 ∙ (k + 1)³
P(k + 1) is true, whenever P(k) is true.
Thus P(1) is true and P(k + 1) is true whenever p(k) is true.
Q12. {1/(3 ∙ 5)} + {1/(5 ∙ 7)} + {1/(7 ∙ 9)} + ……. + 1/{(2n + 1) (2n + 3)} =
A.n/(2n + 3)
B.n/{2(2n + 3)}
C.n/{3(2n + 3)}
D.n/{4(2n + 3)}
Ans: n/{3(2n + 3)}
Let the given statement be P(n). Then,
P(n): {1/(3 ∙ 5) + 1/(5 ∙ 7) + 1/(7 ∙ 9) + ……. + 1/{(2n + 1)(2n + 3)} = n/{3(2n + 3).
Putting n = 1 in the given statement, we get
and LHS = 1/(3 ∙ 5) = 1/15 and RHS = 1/{3(2 × 1 + 3)} = 1/15.
LHS = RHS
Thus, P(1) is true.
Let P(k) be true. Then,
P(k): {1/(3 ∙ 5) + 1/(5 ∙ 7) + 1/(7 ∙ 9) + …….. + 1/{(2k + 1)(2k + 3)} = k/{3(2k + 3)} ….. (i)
Now, 1/(3 ∙ 5) + 1/(5 ∙ 7) + ..…… + 1/[(2k + 1)(2k + 3)] + 1/[{2(k + 1) + 1}2(k + 1) + 3
= {1/(3 ∙ 5) + 1/(5 ∙ 7) + ……. + [1/(2k + 1)(2k + 3)]} + 1/{(2k + 3)(2k + 5)}
= k/[3(2k + 3)] + 1/[2k + 3)(2k + 5)] [using (i)]
= {k(2k + 5) + 3}/{3(2k + 3)(2k + 5)}
= (2k² + 5k + 3)/[3(2k + 3)(2k + 5)]
= {(k + 1)(2k + 3)}/{3(2k + 3)(2k + 5)}
= (k + 1)/{3(2k + 5)}
= (k + 1)/[3{2(k + 1) + 3}]
= P(k + 1): 1/(3 ∙ 5) + 1/(5 ∙ 7) + …….. + 1/[2k + 1)(2k + 3)] + 1/[{2(k + 1) + 1}{2(k + 1) + 3}]
= (k + 1)/{3{2(k + 1) + 3}]
⇒ P(k + 1) is true, whenever P(k) is true.
Q13. If n is an odd positive integer, then aⁿ + bⁿ is divisible by :
A.a² + b²
B.a + b
C.a – b
D.none of these
Ans: a + b
Given number = aⁿ + bⁿ
Let n = 1, 3, 5, ……..
aⁿ + bⁿ = a + b
aⁿ + bⁿ = a³ + b³ = (a + b) × (a² + b² + ab) and so on.
Since, all these numbers are divisible by (a + b) for n = 1, 3, 5,…..
So, the given number is divisible by (a + b)

Q14. (2 ∙ 7N + 3 ∙ 5N – 5) is divisible by ……….. for all N ∈ N
A.6
B.12
C.18
D.24
Ans: 24
Let P(n): (2 ∙ 7ⁿ + 3 ∙ 5ⁿ – 5) is divisible by 24.
For n = 1, the given expression becomes (2 ∙ 71 + 3 ∙ 51 – 5) = 24, which is clearly divisible by 24.
So, the given statement is true for n = 1, i.e., P(1) is true.
Let P(k) be true. Then,
P(k): (2 ∙ 7ⁿ + 3 ∙ 5ⁿ – 5) is divisible by 24.
⇒ (2 ∙ 7ⁿ + 3 ∙ 5ⁿ – 5) = 24m, for m = N
Now, (2 ∙ 7ⁿ + 3 ∙ 5ⁿ – 5)
= (2 ∙ 7k ∙ 7 + 3 ∙ 5k ∙ 5 – 5)
= 7(2 ∙ 7k + 3 ∙ 5k – 5) = 6 ∙ 5k + 30
= (7 × 24m) – 6(5k – 5)
= (24 × 7m) – 6 × 4p, where (5k – 5) = 5(5k-1 – 1) = 4p
[Since (5k-1 – 1) is divisible by (5 – 1)]
= 24 × (7m – p)
= 24r, where r = (7m – p) ∈ N
⇒ P (k + 1): (2 ∙ 7k + 13 ∙ 5k + 1 – 5) is divisible by 24.
⇒ P(k + 1) is true, whenever P(k) is true.
Thus, P(1) is true and P(k + 1) is true, whenever P(k) is true.
Hence, by the principle of mathematical induction, P(n) is true for all n ∈ N.

Q15. For all n∈N, 52n − 1 is divisible by
A.26
B.24
C.11
D.25
Ans: 24
Given number = 52n − 1
Let n = 1, 2, 3, 4, ……..
52n − 1 = 5² − 1 = 25 – 1 = 24
52n − 1 = 54 – 1 = 625 – 1 = 624 = 24 × 26
52n − 1 = 56 – 1 = 15625 – 1 = 15624 = 651 × 24
Since, all these numbers are divisible by 24 for n = 1, 2, 3, …..
So, the given number is divisible by 24

Q16. 1 ∙ 2 + 2 ∙ 3 + 3 ∙ 4 + ….. + n(n + 1) =
A.n(n + 1)(n + 2)
B.{n(n + 1)(n + 2)}/2
C.{n(n + 1)(n + 2)}/3
D.{n(n + 1)(n + 2)}/4
Ans: {n(n + 1)(n + 2)}/3
Let the given statement be P(n). Then,
P(n): 1 ∙ 2 + 2 ∙ 3 + 3 ∙ 4 + ….. + n(n + 1) = (1/3){n(n + 1) (n + 2)}
Thus, the given statement is true for n = 1, i.e., P(1) is true.
Let P(k) be true. Then,
P(k): 1 ∙ 2 + 2 ∙ 3 + 3 ∙ 4 + ….. + k(k + 1) = (1/3){k(k + 1) (k + 2)}.
Now, 1 ∙ 2 + 2 ∙ 3 + 3 ∙ 4 +…+ k(k + 1) + (k + 1) (k + 2)
= (1 ∙ 2 + 2 ∙ 3 + 3 ∙ 4 + ……. + k(k + 1)) + (k + 1) (k + 2)
= (1/3) k(k + 1) (k + 2) + (k + 1)(k + 2) [using (i)]
= (1/3) [k(k + 1) (k + 2) + 3(k + 1)(k + 2)
= (1/3){(k + 1) (k + 2)(k + 3)}
⇒ P(k + 1): 1 ∙ 2 + 2 ∙ 3 + 3 ∙ 4 +……+ (k + 1) (k + 2)
= (1/3){k + 1 )(k + 2) (k +3)}
⇒ P(k + 1) is true, whenever P(k) is true.
Thus, P(1) is true and P(k + 1)is true, whenever P(k) is true.
Hence, by the principle of mathematical induction, P(n) is true for all values of ∈ N.

Q17. 1/(1 ∙ 2 ∙ 3) + 1/(2 ∙ 3 ∙ 4) + …….. + 1/{n(n + 1)(n + 2)} =
A.{n(n + 3)}/{4(n + 1)(n + 2)}
B.(n + 3)/{4(n + 1)(n + 2)}
C.n/{4(n + 1)(n + 2)}
D.None of these
Ans: {n(n + 3)}/{4(n + 1)(n + 2)}
Let P (n): 1/(1 ∙ 2 ∙ 3) + 1/(2 ∙ 3 ∙ 4) + ……. + 1/{n(n + 1)(n + 2)} = {n(n + 3)}/{4(n + 1)(n + 2)}
Putting n = 1 in the given statement, we get
LHS = 1/(1 ∙ 2 ∙ 3) = 1/6 and RHS = {1 × (1 + 3)}/[4 × (1 + 1)(1 + 2)] = ( 1 × 4)/(4 × 2 × 3) = 1/6.
Therefore LHS = RHS.
Thus, the given statement is true for n = 1, i.e., P(1) is true.
Let P(k) be true. Then,
P(k): 1/(1 ∙ 2 ∙ 3) + 1/(2 ∙ 3 ∙ 4) + ……… + 1/{k(k + 1) (k + 2)} = {k(k + 3)}/{4(k + 1) (k + 2)}. …….(i)
Now, 1/(1 ∙ 2 ∙ 3) + 1/(2 ∙ 3 ∙ 4) + ………….. + 1/{k(k + 1) (k + 2)} + 1/{(k + 1) (k + 2) (k + 3)}
= [1/(1 ∙ 2 ∙ 3) + 1/(2 ∙ 3 ∙ 4) + ………..…. + 1/{ k(k + 1) (k + 2}] + 1/{(k + 1)(k + 2) (k + 3)}
= [{k(k + 3)}/{4(k + 1)(k + 2)} + 1/{(k + 1)(k + 2)(k + 3)}] [using(i)]
= {k(k + 3)² + 4}/{4(k + 1)(k + 2) (k + 3)}
= (k³ + 6k² + 9k + 4)/{4(k + 1) (k + 2) (k + 3)}
= {(k + 1) (k + 1) (k + 4)}/{4 (k + 1) (k + 2) (k + 3)}
= {(k + 1) (k + 4)}/{4(k + 2) (k + 3)
⇒ P(k + 1): 1/(1 ∙ 2 ∙ 3) + 1/(2 ∙ 3 ∙ 4) + ……….….. + 1/{(k + 1) (k + 2) (k + 3)}
= {(k + 1) (k + 2)}/{4(k + 2) (k + 3)}
⇒ P(k + 1) is true, whenever P(k) is true.
Thus, P(1) is true and P(k + 1) is true, whenever P(k) is true.
Hence, by the principle of mathematical induction, P(n) is true for all n ∈ N.

Let P (n): 1/(1 ∙ 2 ∙ 3) + 1/(2 ∙ 3 ∙ 4) + ……. + 1/{n(n + 1)(n + 2)} = {n(n + 3)}/{4(n + 1)(n + 2)}
Putting n = 1 in the given statement, we get
LHS = 1/(1 ∙ 2 ∙ 3) = 1/6 and RHS = {1 × (1 + 3)}/[4 × (1 + 1)(1 + 2)] = ( 1 × 4)/(4 × 2 × 3) = 1/6.
Therefore LHS = RHS.
Thus, the given statement is true for n = 1, i.e., P(1) is true.
Let P(k) be true. Then,
P(k): 1/(1 ∙ 2 ∙ 3) + 1/(2 ∙ 3 ∙ 4) + ……… + 1/{k(k + 1) (k + 2)} = {k(k + 3)}/{4(k + 1) (k + 2)}. …….(i)
Now, 1/(1 ∙ 2 ∙ 3) + 1/(2 ∙ 3 ∙ 4) + ………….. + 1/{k(k + 1) (k + 2)} + 1/{(k + 1) (k + 2) (k + 3)}
= [1/(1 ∙ 2 ∙ 3) + 1/(2 ∙ 3 ∙ 4) + ………..…. + 1/{ k(k + 1) (k + 2}] + 1/{(k + 1)(k + 2) (k + 3)}
= [{k(k + 3)}/{4(k + 1)(k + 2)} + 1/{(k + 1)(k + 2)(k + 3)}] [using(i)]
= {k(k + 3)² + 4}/{4(k + 1)(k + 2) (k + 3)}
= (k³ + 6k² + 9k + 4)/{4(k + 1) (k + 2) (k + 3)}
= {(k + 1) (k + 1) (k + 4)}/{4 (k + 1) (k + 2) (k + 3)}
= {(k + 1) (k + 4)}/{4(k + 2) (k + 3)
⇒ P(k + 1): 1/(1 ∙ 2 ∙ 3) + 1/(2 ∙ 3 ∙ 4) + ……….….. + 1/{(k + 1) (k + 2) (k + 3)}
= {(k + 1) (k + 2)}/{4(k + 2) (k + 3)}
⇒ P(k + 1) is true, whenever P(k) is true.
Thus, P(1) is true and P(k + 1) is true, whenever P(k) is true.
Hence, by the principle of mathematical induction, P(n) is true for all n ∈ N.

Q18. For any natural number n, 7ⁿ – 2ⁿ is divisible by
A.3
B.4
C.5
D.7
Ans: 5
Given, 7ⁿ – 2ⁿ
Let n = 1
7ⁿ – 2ⁿ = 71 – 21 = 7 – 2 = 5
which is divisible by 5
Let n = 2
7ⁿ – 2ⁿ = 7² – 2² = 49 – 4 = 45
which is divisible by 5
Let n = 3
7ⁿ – 2ⁿ = 7³ – 2³ = 343 – 8 = 335
which is divisible by 5
Hence, for any natural number n, 7ⁿ – 2ⁿ is divisible by 5

Q19. The sum of n terms of the series 1² + 3² + 5² +……… is
A.n(4n² – 1)/3
B.n²(2n² + 1)/6
C.none of these.
D.n²(n² + 1)/3
Ans: n(4n² – 1)/3
Let S = 1² + 3² + 5² +………(2n – 1)²
⇒ S = {1² + 2² + 3² + 4² ………(2n – 1)² + (2n)²} – {2² + 4² + 6² +………+ (2n)²}
⇒ S = {2n × (2n + 1) × (4n + 1)}/6 – {4n × (n + 1) × (2n + 1)}/6
⇒ S = n(4n² – 1)/3

Q20. For all n ∈ N, 3n5 + 5n³ + 7n is divisible by:
A.5
B.15
C.10
D.3
Ans: 15
Given number = 3n5 + 5n³ + 7n
Let n = 1, 2, 3, 4, ……..
3n5 + 5n³ + 7n = 3 × 1² + 5 × 1³ + 7 × 1 = 3 + 5 + 7 = 15
3n5 + 5n³ + 7n = 3 × 25 + 5 × 2³ + 7 × 2 = 3 × 32 + 5 × 8 + 7 × 2 = 96 + 40 + 14 = 150 = 15 × 10
3n5 + 5n³ + 7n = 3 × 35 + 5 × 3³ + 7 × 3 = 3 × 243 + 5 × 27 + 7 × 3 = 729 + 135 + 21 = 885 = 15 × 59
Since, all these numbers are divisible by 15 for n = 1, 2, 3, …..
So, the given number is divisible by 15


MCQ Questions for Class 11 Maths


NCERT SOLUTIONS FOR CLASS 11

Post a Comment

इस पेज / वेबसाइट की त्रुटियों / गलतियों को यहाँ दर्ज कीजिये
(Errors/mistakes on this page/website enter here)

Previous Post Next Post