MCQ Questions for Class 11 Maths Chapter 5 Complex Numbers and Quadratic Equations with Answers

Complex Numbers and Quadratic Equations Class 11 Maths MCQs Questions with Answers
Check the below NCERT MCQ Questions for Class 11 Maths Chapter 5 Complex Numbers and Quadratic Equations with Answers Pdf free download. MCQ Questions for Class 11 Maths with Answers were prepared based on the latest exam pattern. We have Provided Complex Numbers and Quadratic Equations Class 11 Maths MCQs Questions with Answers to help students understand the concept very well.
Class 11 Maths Chapter 5 Quiz
Class 11 Maths Chapter 5 MCQ Online Test
You can refer to NCERT Solutions for Class 11 Maths Chapter 5 Complex Numbers and Quadratic Equations to revise the concepts in the syllabus effectively and improve your chances of securing high marks in your board exams.
Complex Numbers and Quadratic Equations Class 11 Maths MCQ online test
Q1. | Let z1 and z2 be two roots of the equation z² + az + b = 0, z being complex. Further assume that the origin, z1 and z2 form an equilateral triangle. Then |
A.a² = b |
|
B.a² = 2b |
|
C.a² = 3b |
|
D.a² = 4b |
Ans: a² = 3b
Given, z1 and z1 be two roots of the equation z²+ az + b = 0
Now, z1 + z2 = -a and z1 × z2 = b
Since z1 and z2 and z3 from an equilateral triangle.
⇒ z1² + z2² + z3² = z1 × z2 + z2 × z3 + z1 × z3
⇒ z1² + z2² = z1 × z2 {since z3 = 0}
⇒ (z1 + z2)² – 2z1 × z2 = z1 × z2
⇒ (z1 + z2)² = 2z1 × z2 + z1 × z2
⇒ (z1 + z2)² = 3z1 × z2
⇒ (-a)² = 3b
⇒ a² = 3b
Given, z1 and z1 be two roots of the equation z²+ az + b = 0
Now, z1 + z2 = -a and z1 × z2 = b
Since z1 and z2 and z3 from an equilateral triangle.
⇒ z1² + z2² + z3² = z1 × z2 + z2 × z3 + z1 × z3
⇒ z1² + z2² = z1 × z2 {since z3 = 0}
⇒ (z1 + z2)² – 2z1 × z2 = z1 × z2
⇒ (z1 + z2)² = 2z1 × z2 + z1 × z2
⇒ (z1 + z2)² = 3z1 × z2
⇒ (-a)² = 3b
⇒ a² = 3b
Q2. | The value of ii is |
A.0 |
|
B.e-π |
|
C.2e-π/2 |
|
D.e-π/2 |
Ans: e-π/2
Let A = ii
⇒ log A = i log i
⇒ log A = i log(0 + i)
⇒ log A = i [log 1 + i tan-1 ∞]
⇒ log A = i [0 + i π/2]
⇒ log A = -π/2
⇒ A = e-π/2
Let A = ii
⇒ log A = i log i
⇒ log A = i log(0 + i)
⇒ log A = i [log 1 + i tan-1 ∞]
⇒ log A = i [0 + i π/2]
⇒ log A = -π/2
⇒ A = e-π/2
Q3. | The value of √(-25) + 3√(-4) + 2√(-9) is |
A.13 i |
|
B.-13 i |
|
C.17 i |
|
D.-17 i |
Ans: 17 i
Given, √(-25) + 3√(-4) + 2√(-9)
= √{(-1) × (25)} + 3√{(-1) × 4} + 2√{(-1) × 9}
= √(-1) × √(25) + 3{√(-1) × √4} + 2{√(-1) × √9}
= 5i + 3 × 2i + 2 × 3i {since √(-1) = i}
= 5i + 6i + 6i
= 17 i
So, √(-25) + 3√(-4) + 2√(-9) = 17 i
Given, √(-25) + 3√(-4) + 2√(-9)
= √{(-1) × (25)} + 3√{(-1) × 4} + 2√{(-1) × 9}
= √(-1) × √(25) + 3{√(-1) × √4} + 2{√(-1) × √9}
= 5i + 3 × 2i + 2 × 3i {since √(-1) = i}
= 5i + 6i + 6i
= 17 i
So, √(-25) + 3√(-4) + 2√(-9) = 17 i
Q4. | If the cube roots of unity are 1, ω and ω², then the value of (1 + ω / ω²)³ is |
A.1 |
|
B.-1 |
|
C.ω |
|
D.ω² |
Ans: -1
Given, the cube roots of unity are 1, ω and ω²
So, 1 + ω + ω² = 0
and ω³ = 1
Now, {(1 + ω)/ ω²}³ = {-ω²/ ω²}³ = {-1}³ = -1
Given, the cube roots of unity are 1, ω and ω²
So, 1 + ω + ω² = 0
and ω³ = 1
Now, {(1 + ω)/ ω²}³ = {-ω²/ ω²}³ = {-1}³ = -1
Q5. | If {(1 + i)/(1 – i)}ⁿ = 1 then the least value of n is |
A.1 |
|
B.2 |
|
C.3 |
|
D.4 |
Ans: 4
Given, {(1 + i)/(1 – i)}ⁿ = 1
⇒ [{(1 + i) × (1 + i)}/{(1 – i) × (1 + i)}]ⁿ = 1
⇒ [{(1 + i)²}/{(1 – i²)}]ⁿ = 1
⇒ [(1 + i² + 2i)/{1 – (-1)}]ⁿ = 1
⇒ [(1 – 1 + 2i)/{1 + 1}]ⁿ = 1
⇒ [2i/2]ⁿ = 1
⇒ iⁿ = 1
Now, iⁿ is 1 when n = 4
So, the least value of n is 4
Given, {(1 + i)/(1 – i)}ⁿ = 1
⇒ [{(1 + i) × (1 + i)}/{(1 – i) × (1 + i)}]ⁿ = 1
⇒ [{(1 + i)²}/{(1 – i²)}]ⁿ = 1
⇒ [(1 + i² + 2i)/{1 – (-1)}]ⁿ = 1
⇒ [(1 – 1 + 2i)/{1 + 1}]ⁿ = 1
⇒ [2i/2]ⁿ = 1
⇒ iⁿ = 1
Now, iⁿ is 1 when n = 4
So, the least value of n is 4
Q6. | The value of [i19 + (1/i)25]² is |
A.-1 |
|
B.-2 |
|
C.-3 |
|
D.-4 |
Ans: -4
Given, [i19 + (1/i)25]²
= [i19 + 1/i25]²
= [i16 × i³ + 1/(i24 × i)]²
= [1 × i³ + 1/(1 × i)]² {since i4 = 1}
= [i³ + 1/i]²
= [i² × i + 1/i]²
= [(-1) × i + 1/i]² {since i² = -1}
= [-i + 1/i]²
= [-i + i4 /i]²
= [-i + i³]²
= [-i + i² × i]²
= [-i + (-1) × i]²
= [-i – i]²
= [-2i]²
= 4i²
= 4 × (-1)
= -4
So, [i19 + (1/i)25]² = -4
Given, [i19 + (1/i)25]²
= [i19 + 1/i25]²
= [i16 × i³ + 1/(i24 × i)]²
= [1 × i³ + 1/(1 × i)]² {since i4 = 1}
= [i³ + 1/i]²
= [i² × i + 1/i]²
= [(-1) × i + 1/i]² {since i² = -1}
= [-i + 1/i]²
= [-i + i4 /i]²
= [-i + i³]²
= [-i + i² × i]²
= [-i + (-1) × i]²
= [-i – i]²
= [-2i]²
= 4i²
= 4 × (-1)
= -4
So, [i19 + (1/i)25]² = -4
Q7. | If z and w be two complex numbers such that |z| ≤ 1, |w| ≤ 1 and |z + iw| = |z – iw| = 2, then z equals {w is congugate of w} |
A.1 or i |
|
B.i or – i |
|
C.1 or – 1 |
|
D.i or – 1 |
Ans: 1 or – 1
Given |z + iw| = |z – iw| = 2 {w is congugate of w}
⇒ |z – (-iw)| = |z – (iw)| = 2
⇒ |z – (-iw)| = |z – (-iw)|
So, z lies on the perpendicular bisector of the line joining -iw and -iw.
Since, -iw is the mirror in the x-axis, the locus of z is the x-axis.
Let z = x + iy and y = 0
⇒ |z| < 1 and x² + 0² < 0
⇒ -1 ≤ x ≤ 1
So, z may take value 1 or -1
Given |z + iw| = |z – iw| = 2 {w is congugate of w}
⇒ |z – (-iw)| = |z – (iw)| = 2
⇒ |z – (-iw)| = |z – (-iw)|
So, z lies on the perpendicular bisector of the line joining -iw and -iw.
Since, -iw is the mirror in the x-axis, the locus of z is the x-axis.
Let z = x + iy and y = 0
⇒ |z| < 1 and x² + 0² < 0
⇒ -1 ≤ x ≤ 1
So, z may take value 1 or -1
Q8. | The value of {-√(-1)}4n+3, n ∈ N is |
A.i |
|
B.-i |
|
C.1 |
|
D.-1 |
Ans: i
Given, {-√(-1)}4n+3
= {-i}4n+3 {since √(-1) = i}
= {-i}4n × {-i}³
= {(-i)4}ⁿ × (-i³) {since i4 = 1}
= 1ⁿ ×(-i × i²)
= -i × (-1) {since i² = -1}
= i
Given, {-√(-1)}4n+3
= {-i}4n+3 {since √(-1) = i}
= {-i}4n × {-i}³
= {(-i)4}ⁿ × (-i³) {since i4 = 1}
= 1ⁿ ×(-i × i²)
= -i × (-1) {since i² = -1}
= i
Q9. | Find real θ such that (3 + 2i × sin θ)/(1 – 2i × sin θ) is real |
A.π |
|
B.nπ |
|
C.nπ/2 |
|
D.2nπ |
Ans: nπ
Given,
(3 + 2i × sin θ)/(1 – 2i × sin θ) = {(3 + 2i × sin θ)×(1 – 2i × sin θ)}/(1 – 4i² × sin² θ)
(3 + 2i × sin θ)/(1 – 2i × sin θ) = {(3 – 4sin² θ) + 8i × sin θ}/(1 + 4sin² θ) …………. 1
Now, equation 1 is real if sin θ = 0
⇒ sin θ = sin nπ
⇒ θ = nπ
Given,
(3 + 2i × sin θ)/(1 – 2i × sin θ) = {(3 + 2i × sin θ)×(1 – 2i × sin θ)}/(1 – 4i² × sin² θ)
(3 + 2i × sin θ)/(1 – 2i × sin θ) = {(3 – 4sin² θ) + 8i × sin θ}/(1 + 4sin² θ) …………. 1
Now, equation 1 is real if sin θ = 0
⇒ sin θ = sin nπ
⇒ θ = nπ
Q10. | If i = √(-1) then 4 + 5(-1/2 + i√3/2)334 + 3(-1/2 + i√3/2)365 is equals to |
A.1 – i√3 |
|
B.-1 + i√3 |
|
C.i√3 |
|
D.-i√3 |
Ans: i√3
Given, 4 + 5(-1/2 + i√3/2)334 + 3(-1/2 + i√3/2)365
= 4 + 5w334 + 3w365 {since w = -1/2 + i√3/2}
= 4 + 5w + 3w² {since w³ = 1}
= 4 + 5(-1/2 + i√3/2) + 3(-1/2 – i√3/2) {since w² = (-1/2 – i√3/2)}
= i√3
Given, 4 + 5(-1/2 + i√3/2)334 + 3(-1/2 + i√3/2)365
= 4 + 5w334 + 3w365 {since w = -1/2 + i√3/2}
= 4 + 5w + 3w² {since w³ = 1}
= 4 + 5(-1/2 + i√3/2) + 3(-1/2 – i√3/2) {since w² = (-1/2 – i√3/2)}
= i√3
Q11. | The real part of the complex number √9 + √(-16) is |
A.3 |
|
B.-3 |
|
C.4 |
|
D.-4 |
Ans: 3
Given, √9 + √(-16) = √9 + √(16) × √(-1)
= 3 + 4i {since i = √(-1)}
So, the real part of the complex number is 3
Given, √9 + √(-16) = √9 + √(16) × √(-1)
= 3 + 4i {since i = √(-1)}
So, the real part of the complex number is 3
Q12. | The modulus of 5 + 4i is |
A.41 |
|
B.-41 |
|
C.√41 |
|
D.-√41 |
Ans: √41
Let Z = 5 + 4i
Now modulus of Z is calculated as
|Z| = √(5² + 4²)
⇒ |Z| = √(25 + 16)
⇒ |Z| = √41
So, the modulus of 5 + 4i is √41
Let Z = 5 + 4i
Now modulus of Z is calculated as
|Z| = √(5² + 4²)
⇒ |Z| = √(25 + 16)
⇒ |Z| = √41
So, the modulus of 5 + 4i is √41
Q13. | The modulus of 1 + i√3 is |
A.1 |
|
B.2 |
|
C.3 |
|
D.None of these |
Ans: 2
Let Z = 1 + i√3
Now modulus of Z is calculated as
|Z| = √{1² + (√3)²}
⇒ |Z| = √(1 + 3)
⇒ |Z| = √4
⇒ |Z| = 2
So, the modulus of 1 + i√3 is 2
Let Z = 1 + i√3
Now modulus of Z is calculated as
|Z| = √{1² + (√3)²}
⇒ |Z| = √(1 + 3)
⇒ |Z| = √4
⇒ |Z| = 2
So, the modulus of 1 + i√3 is 2
Q14. | The value of {-√(-1)}4n+3, n ∈ N is |
A.i |
|
B.-i |
|
C.1 |
|
D.-1 |
Ans: i
Given, {-√(-1)}4n+3
= {-i}4n+3 {since √(-1) = i}
= {-i}4n × {-i}³
= {(-i)4}ⁿ ×(-i³) {since i4 = 1}
= 1ⁿ × (-i × i²)
= -i × (-1) {since i² = -1}
= i
Given, {-√(-1)}4n+3
= {-i}4n+3 {since √(-1) = i}
= {-i}4n × {-i}³
= {(-i)4}ⁿ ×(-i³) {since i4 = 1}
= 1ⁿ × (-i × i²)
= -i × (-1) {since i² = -1}
= i
Q15. | If ω is cube root of unity (ω ≠ 1) , then the least value of n where n is a positive integer such that (1 + ω²)ⁿ = (1 + ω4)ⁿ is |
A.2 |
|
B.3 |
|
C.5 |
|
D.6 |
Ans: 3
Given ω is an imaginary cube root of unity.
So 1 + ω + ω² = 0 and ω³ = 1
Now, (1 + ω²)ⁿ = (1 + ω4)ⁿ
⇒ (-1)ⁿ ×(ω)ⁿ = (1 + ω × ω³)ⁿ
⇒ (-1)ⁿ × (ω)ⁿ = (1 + ω)ⁿ
⇒ (-1)ⁿ × (ω)ⁿ = (-ω²)ⁿ
⇒ (-1)ⁿ × (ω)ⁿ = (-1)ⁿ × ω²ⁿ
⇒ ωⁿ = ω²ⁿ
Since ω³ = 1, So the least value of n is 3
Given ω is an imaginary cube root of unity.
So 1 + ω + ω² = 0 and ω³ = 1
Now, (1 + ω²)ⁿ = (1 + ω4)ⁿ
⇒ (-1)ⁿ ×(ω)ⁿ = (1 + ω × ω³)ⁿ
⇒ (-1)ⁿ × (ω)ⁿ = (1 + ω)ⁿ
⇒ (-1)ⁿ × (ω)ⁿ = (-ω²)ⁿ
⇒ (-1)ⁿ × (ω)ⁿ = (-1)ⁿ × ω²ⁿ
⇒ ωⁿ = ω²ⁿ
Since ω³ = 1, So the least value of n is 3
Q16. | The value of i9 + i10 + i11 + i12 is |
A.i |
|
B.2i |
|
C.0 |
|
D.1 |
Ans: 0
Given, i9 + i10 + i11 + i12
= i9 (1 + i + i2 + i3 )
= i9 (1 + i – 1 – i ) {since i2 = (-1) and i4 = 1}
= i9 × 0
= 0
Given, i9 + i10 + i11 + i12
= i9 (1 + i + i2 + i3 )
= i9 (1 + i – 1 – i ) {since i2 = (-1) and i4 = 1}
= i9 × 0
= 0
Q17. | If a = cos α + i sin α and b = cos β + i sin β , then the value of 1/2(ab + 1/ ab) is |
A.sin (α + β) |
|
B.cos (α + β) |
|
C.sin (α – β) |
|
D.cos (α – β) |
Ans: cos (α + β)
Given a = cos α + i sin α and b = cos β + i sin β
Now, 1/a = 1/(cos α + i sin α)
⇒ 1/a = {1 × (cos α – i sin α)/{(cos α + i sin α) × (cos α + i sin α)}
⇒ 1/a = (cos α – i sin α)/(cos² α + i sin² α)
⇒ 1/a = (cos α – i sin α)
Again, 1/b = 1/(cos β + i sin β)
⇒ 1/b = {1 × (cos β – i sin β)/{(cos β + i sin β) × (cos β + i sin β)}
⇒ 1/b = (cos β – i sin β)/(cos² β + i sin² β)
⇒ 1/b = (cos β – i sin β)
Now, ab = (cos α + i sin α) × (cos β + i sin β)
⇒ ab = cos α × cos β + i cos α × sin β + i sin α × cos β – sin α × sin β
Again, 1/ab = (cos α – i sin α) × (cos β – i sin β)
⇒ 1/ab = cos α × cos β – i cos α × sin β – i sin α × cos β – sin α × sin β
Now, ab + 1/ab = cos α × cos β + i cos α × sin β + i sin α × cos β – sin α × sin β + cos α × cos β – i cos α × sin β – i sin α × cos β – sin α × sin β
⇒ ab + 1/ab = 2(cos α × cos β – sin α × sin β)
⇒ 1/2(ab + 1/ ab) = 2(cos α × cos β – sin α × sin β)/2
⇒ 1/2(ab + 1/ ab) = cos α × cos β – sin α × sin β
⇒ 1/2(ab + 1/ ab) = cos(α + β)
Given a = cos α + i sin α and b = cos β + i sin β
Now, 1/a = 1/(cos α + i sin α)
⇒ 1/a = {1 × (cos α – i sin α)/{(cos α + i sin α) × (cos α + i sin α)}
⇒ 1/a = (cos α – i sin α)/(cos² α + i sin² α)
⇒ 1/a = (cos α – i sin α)
Again, 1/b = 1/(cos β + i sin β)
⇒ 1/b = {1 × (cos β – i sin β)/{(cos β + i sin β) × (cos β + i sin β)}
⇒ 1/b = (cos β – i sin β)/(cos² β + i sin² β)
⇒ 1/b = (cos β – i sin β)
Now, ab = (cos α + i sin α) × (cos β + i sin β)
⇒ ab = cos α × cos β + i cos α × sin β + i sin α × cos β – sin α × sin β
Again, 1/ab = (cos α – i sin α) × (cos β – i sin β)
⇒ 1/ab = cos α × cos β – i cos α × sin β – i sin α × cos β – sin α × sin β
Now, ab + 1/ab = cos α × cos β + i cos α × sin β + i sin α × cos β – sin α × sin β + cos α × cos β – i cos α × sin β – i sin α × cos β – sin α × sin β
⇒ ab + 1/ab = 2(cos α × cos β – sin α × sin β)
⇒ 1/2(ab + 1/ ab) = 2(cos α × cos β – sin α × sin β)/2
⇒ 1/2(ab + 1/ ab) = cos α × cos β – sin α × sin β
⇒ 1/2(ab + 1/ ab) = cos(α + β)
Q18. | The polar form of -1 + i is |
A.√2(cos π/2 + i × sin π/2) |
|
B.√2(cos π/4 + i × sin π/4) |
|
C.√2(cos 3π/2 + i × sin 3π/2) |
|
D.√2(cos 3π/4 + i × sin 3π/4) |
Ans: √2(cos 3π/4 + i × sin 3π/4)
The polar form of a com plex number = r(cos θ + i × sin θ)
Given, complex number = -1 + i
Let x + iy = -1 + i
Now, x = -1, y = 1
Now, r = √{(-1)² + 1²} = √(1 + 1) = √2
and tan θ = y/x
⇒ tan θ = 1/(-1)
⇒ tan θ = -1
⇒ θ = 3π/4
Now, polar form is √2(cos 3π/4 + i × sin 3π/4)
The polar form of a com plex number = r(cos θ + i × sin θ)
Given, complex number = -1 + i
Let x + iy = -1 + i
Now, x = -1, y = 1
Now, r = √{(-1)² + 1²} = √(1 + 1) = √2
and tan θ = y/x
⇒ tan θ = 1/(-1)
⇒ tan θ = -1
⇒ θ = 3π/4
Now, polar form is √2(cos 3π/4 + i × sin 3π/4)
Q19. | For all complex numbers z1, z2 satisfying |z1| = 12 and |z2 – 3 – 4i| = 5, the minimum value of |z1 – z2| is |
A.0 |
|
B.2 |
|
C.7 |
|
D.17 |
Ans: 2
Given For all complex numbers z1, z2 satisfying |z1| = 12 and |z2 – 3 – 4i| = 5
Now, mod(z1) = 12 represents a circle centred at 0 and radius 12
mod(z2 – 3 – 4i) = 5 represents a circle centred at (3, 4) and radius 5
This circle passes through the origin. Distance of diametrically opposite end is 10
So, the minimum value (z1 – z2) = 2
Given For all complex numbers z1, z2 satisfying |z1| = 12 and |z2 – 3 – 4i| = 5
Now, mod(z1) = 12 represents a circle centred at 0 and radius 12
mod(z2 – 3 – 4i) = 5 represents a circle centred at (3, 4) and radius 5
This circle passes through the origin. Distance of diametrically opposite end is 10
So, the minimum value (z1 – z2) = 2
Q20. | The value of (1 – i)² is |
A.i |
|
B.-i |
|
C.2i |
|
D.-2i |
Ans: -2i
Given, (1 – i)² = 1 + i² – 2i
= 1 + (-1) – 2i
= 1 – 1 – 2i
= -2i
Given, (1 – i)² = 1 + i² – 2i
= 1 + (-1) – 2i
= 1 – 1 – 2i
= -2i
MCQ Questions for Class 11 Maths
-
MCQ Questions for Class 11 Maths Chapter 1 Sets
MCQ Questions for Class 11 Maths Chapter 2 Relations and Functions
MCQ Questions for Class 11 Maths Chapter 3 Trigonometric Functions
MCQ Questions for Class 11 Maths Chapter 4 Principle of Mathematical Induction
MCQ Questions for Class 11 Maths Chapter 5 Complex Numbers and Quadratic Equations
MCQ Questions for Class 11 Maths Chapter 6 Linear Inequalities
MCQ Questions for Class 11 Maths Chapter 7 Permutations and Combinations
MCQ Questions for Class 11 Maths Chapter 8 Binomial Theorem
MCQ Questions for Class 11 Maths Chapter 9 Sequences and Series
MCQ Questions for Class 11 Maths Chapter 10 Straight Lines
MCQ Questions for Class 11 Maths Chapter 11 Conic Sections
MCQ Questions for Class 11 Maths Chapter 12 Introduction to Three Dimensional Geometry
MCQ Questions for Class 11 Maths Chapter 13 Limits and Derivatives
MCQ Questions for Class 11 Maths Chapter 14 Mathematical Reasoning
MCQ Questions for Class 11 Maths Chapter 15 Statistics
MCQ Questions for Class 11 Maths Chapter 16 Probability
Post a Comment
इस पेज / वेबसाइट की त्रुटियों / गलतियों को यहाँ दर्ज कीजिये
(Errors/mistakes on this page/website enter here)